
AD-A096 399 PURDUE UNIV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/6 9/2
PROPERTIES OP THE AUGMENTED DATA MANIPLATOR NETWORK IN A SIMO -ETC(U)

DEC 80 6 B ADAMS, H .J SIEGEL AFOSR-78-3581
UNCLASSIFIED TR-EE 80-51 AFOSRTR-81-203 NL

ALFOSR. T.8 1o .0

a- PROPERTIES OF THE AUGMENTED
CDATA MANIPULATOR NETWORK

IN AN SIND ENVIRONMENT

George B. Adams III

Howard Jay Siegel

School of Electrical Engineering DTIC
Purdue University ELECTEft

West Lafayette, Indiana 47907 MAR 17 1981 J

A

T-EE 80-51
December 1980

This work was supported by the Air Force Office of Scientific Research,
L.. .Air Force Systems Command, USAF, under grant number AFOSR-78-3581.

or,_ P16ht
048

R! R 6 f48

Unclassified
SECURITY CLASSIFICATION OF ?MIS PAGE (07,-.n f'.Ie Ent.r..,)

REPORT DOCUMENTATION PAGE INSI RtCI IONS

I. REPORT NUMBER IYI AEI NO. 3; IT tM

ig SRi': -R 1 2 GOV ACESONN.3RC/ETSA15NJI

4. f~~SII.) TYPF ^C RFPPT A PERIOD CGVFRFO

y Properties of the Augmented Data Manipulator a tri
Network in an SIMD Environment * ,Int'rin ' pi

-" 6 PRAOR GONG. RCPORT Nj t_ L)

7. AUTMO.Rfo. , ,L j oR 1 ANT NUMe T.

George B /AdamsjIlll
Howard Jay/Siegel

9. PERFORMING OGANIZATION NAME AND ADDRESS ""10 PROGRAM CLEuL-4T PQC.FCT Ta5K
(I5#iAREA &S Q"UI L;q&RSchool of Electrical Engineering

Purdue University - (J.;))'bj
West Lafayette, IN 47907 61102F 23(4/A2

II. CONTROLLING OFFICE NAME AND ADDRESS - ,12 aEPORT OTF

United States Air Force, Air Force Office of " Dec*. .De8q
Scientific Research, Building 410, Boiling AFB, ' NUMBER OV PAG&S
Washington, DC 20332 105

14 MONITORING AGENCY NAME & AODRESS(If dlff... Irom -onfrolin OfII,) IS SECUPITY ', ASS ,4 IhI. ,.r

Unclassi fied
.F D/'-L ASSIIICAIN NRA9 - ' -.-

16 DISTRIBUTION STATEMEN' (f thie RIp.e t)

.:t .' :"1 ., d

?? DISTRIBUTION STATEMENT (of the abstracI entered In Block 20, If diffoereI from Report)

16 SUPPLEMENTARY NOTFS

9 K F Y WORDS (Cnrrinue On reorso aide If rlec ,r ssa and Idenliy by hlc-J. mhr,,rr)

augmented data manipulator, computer architecture, dynamically reconfigurdhle
systems, interconnection network, parallel processing, PASM, permutation
network, SIMD machine

20 ABSTRACT P C (C',,,r . .rr r ,IOro .rd. II r~oor ' .r, Idonr . ' bit ,an rr,Fc r ,

Please see reverse side.

DD , AN , 1473 Unclassified

SCURITY CLA CAI ..
1

A Z

............ A '

Unclassified
SECURITi -LASSIFICATION OF THIS PAGE(Wh.n Dat* Font...d)

The demand for computers with ever greater throughput coupled with
the decreased costs accompanying advances in semiconductor technology
has created a great deal of interest in parallel processing systems.
Single instruction stream - multiple data stream (SIMD) machines and
multiple instruction stream - multiple data stream (MIMD) machines are
two types of parallel processing system architectures. PASM is a parti-
tionable SIMD/MIMD parallel processor, intended to operate in either
mode of parallelism, being developed at Purdue University. The inter-
connection network chosen for this system will greatly influence its
performance. The Generalized Cube and the Augmented Data Manipulator
(ADM) are two networks being considered for use in PASM. This work is
primarily concerned with the capabilities of the ADM network in SIMD
mode.

The number of data permutations passable by the ADM network is ex-
plored. - First the number of permutations performable by any stage is
xcounted. Using partitioning properties of the network and combinatorial
mathematics, this result is extended to permutations performable by the
entire network. For N = 8 an exact count of the number of performable
permutations is given. For N > 8, upper and lower bounds are given.
Comparison with the Generalized Cube network is made. .

A Routing tag schemes are described for both the Generalized Cube and
ADM networks. The number of data permutations passable by the ADM net-
work using positive dominant or negative dominant permutation routing
tags is counted. The number of permutations passable using natural per-
mutation routing tags is bounded.

Algorithms for determining permutation passability in the ADM net-
work using three related types of routing tags for distributed network
control are presented. Correctness proofs are given and algorithm com-
plexity determined.

To further investigate ADM network capabilities in SIMD mode, group
theory is used to derive additional properties. It is shown that the
ADM network cannot pass all even permutations when N > 8.

Unc lass i fed

SECUITY CL ASSIf
I
CA',I

N
r !'.IS PA', Ill,.' I'Cr I

- - - -- -

PROPERTIES OF THE AUGMENTED DATA

MANIPULATOR NETWORK IN AN SIMD ENVIRONMENT

George B. Adams III

Howard Jay Siegel

SchooL of ELectrical Engineering

Purdue University

West Lafayette, Indiana 47907

Purdue University

TR-EE 80-51

December, 1980

This work was supported by the Air Force Office of Scientific Research,

Air Force Systems Command, USAF, under grant number AFOSR-78-3581.

! ' ,' !.I¢ F I: . (!I AFSC)

-. I
-- -.,-, - , -12 7L) -

ii

ACKNOWLEDGEMENTS

The authors wish to thank the following people for their comments

on the contents of this work: Professor Leah J. Siegel, Professor Philip

H. Swain, Professor Carl H. Smith, and Robert J. McMillen. The aithors

also thank MelLanie Boes for typing the manuscript. This was supported

by the Air Force Office of Scientific Research, Air Force Systems Com-

mand, USAF, under grant number AFOSR-78-3581.

This report is based on the Master's Thesis of George B. Adams III.

Portions of this work have appeared in the following:

S. D. Smith, H. J. Siegel, R. J. McMillen, and G. B. Adams III, "Use of

the augmented data manipulator multistage network for SIMD machines,"

1980 International Conference on Parallel Processing, Aug. 1980, pp.

75-78.

R. J. McMillen, G. B. Adams III, and H. J. Siegel, "Permuting with the

augmented data manipulator network," Eighteenth Annual Allerton

Conference on Communication, Control, and Computing, Oct. 1980, to ap-

pear in the proceedings.

'I

TABLE OF CONTENTS

Page
LIST OF TABLES. v

LIST OF FIGURES. vi

LIST OF ALGORITHMS viiiIABSTRACTix

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 MODEL OF SIMD MACHINES. 5

CHAPTER 3 OVERVIEW OF PASM 10

CHAPTER 4 NETWORK DEFINITIONS. 20

CHAPTER 5 COUNTING GENERALIZED CUBE PERMUTATIONS 28

CHAPTER 6 COUNTING AUGMENTED DATA MANIPULATOR
PERMUTATIONS. 30

6.1 Introduction. 30
6.2 Stage Permutations. 33
6.3 Network Permutations. 42
6.4 Tightness and Asymptotic Behavior of

the Bounds 52
6.5 Conclusions. 56

CHAPTER 7 GENERALIZED CUBE PERFORMANCE WITH ROUTING
TAGS. 57

7.1 Introduction 57
7.2 Routing Tag Operation 58
7.3 Conclusions. 59

CHAPTER 8 AUGMENTED DATA MANIPULATOR PERFORMANCE
WITH ROUTING TAGS 60

8.1 Introduction 60
8.2 Routing T3g Schemes 60

iv

8.3 The Number of Permutations Passable
Using Positive or Negative Dominant
Tags.......................63

8.4 ConcLusions....................70

CHAPTER 9 ALGORITHMS FOR DETERMINING PERMUTATION
PASSABILITY ON THE AUGMENTED DATA
MANIPULATOR. 71

9.1 Introduction 71
9.2 The Algorithms. 71
9.3 Conclusions. 82

CHAPTER 10 FURTHER PROPERTIES OF THE AUGMENTED
DATA M4ANIPULATOR NETWORK. 83

10.1 Introduction83
10.2 Definitions and Notation. 83
10.3 Theoretical Results 85
10.4 Conclusions. 88

CHAPTER 11 CONCLUSIONS. 89

LIST OF REFERENCES 92

LIST OF TABLES

TabLe Page

6.1 PL(N) and Pu(N) are the Lower and upper bounds

on the number of permutations performable by

an N-input ADM network, respectively. S(N) is

the spread of the bounds calculated as

EPU(N)-PL (N))/PL (N). Cube (N) is the number of

permutations performable by an N-input

Generalized Cube network, given by 2Nn/2. 55

vi

LIST OF FIGURES

Figure Page
2.1 A PE-to-PE model of an SIMD machine 6

2.2 A processor-to-memory model of an SIMD machine 8

3.1 Block diagram overview of PASM 12

3.2 PASM Parallel Computation Unit 14

3.3 PASM Micro Controllers 16

3.4 Organization of the PASM Memory Storage System
for N = 32 and Q = 4, where "MSU" is Memory

Storage Unit, "MC" is Micro Controller, and
"PCU" is Parallel Computation Unit 18

4.1 The Generalized Cube network for N = 8. The
straight and exchange connections of the
interchange box are shown 21

4.2 The augmented data manipulator (ADM) network for
N = 8. Straight connections are shown b/ the

dotted line; PM2 1, by the solid lines and PM2 -i
by the dashed Lines 23

4.3 Interchange box settings for performing a cyclic
shift of +3 modulo 8 in the Generalized Cube 26

4.4 One possible ADM network setting for performing

a cyclic shift of +3 modulo 8 27

6.1 Example of a network setting for N = 8 which

does not correspond to an overall permutation 31

6.2 Example of two distinct network settings for
N = 8 which correspond to the same overall

permutation 32

vii

6.3 a) Straight connections, b) Regular exchange,
c) Irregular exchange 35

6.4 A stage 0 permutation and its characteristic
binary number for N = 8 37

6.5 Configuration implied by two adjacent Is in the
characteristic binary number. This is not a
permutation 39

6.6 The first step in the conceptual process of
partitioning an ADM network for N = 8 into two
independent subnetworks joined at stage 0.
Each celL that interfaces stage 1 and 0 is
shown divided into an output cell from stage 1
and an input cell to stage 0 43

6.7 Cells from stages 2 and 1 of an ADM network
for N = 8 rearranged into the two independent
subnetworks, each with N/2 inputs. E and 0
designate even and odd subnetwork, respectively 45

6.8 Illustration of the four stage 0 permutations

for N = 8 which connect all even subnetwork

outputs to odd network outputs, and odd

subnetwork outputs to even network outputs.

They are (a) all regular exchanges, (b) all

irregular exchanges, (c) all +20, and (d) all

-20. Even and odd source subnetworks are

indicated by E and 0, respectively 46

8.1 An overall permutation for N = 8 using no
wraparound connections that is not performable
using natural routing tags 69

viii

LIST OF ALGORITHMS

Algorithm Page
9.1 Procedure PASSABILITY 72

9.2 Version of REQUEST. 75

ABSTRACT

The demand for computers with ever greater throughput coupled with

the decreased costs accompanying advances in semiconductor technology

has created a great deal of interest in parallel processing systems.

Single instruction stream - multiple data stream (SIMD) machines and

multiple instruction stream - multiple data stream (MIMD) machines are

two types of parallel processing system architectures. PASM is a parti-

tionable SIMD/MIMD parallel processor, intended to operate in either

mode of parallelism, being developed at Purdue University. The inter-

connection network chosen for this system will greatly influence its

performance. The Generalized Cube and the Augmented Data Manipulator

(ADM) are two networks being considered for use in PASM. This work is

primarily concerned with the capabilities of the ADM network in SIMD

mode.

The number of data permutations passable by the ADM network is ex-

plored. First the number of permutations performable by any stage is

counted. Using partitioning properties of the network and combinatorial

mathematics, this result is extended to permutations performable by the

entire network. For N = 8 an exact count of the number of performable

permutations is given. For N > 8, upper and lower bounds are given.

Comparison with the Generalized Cube network is made.

Routing tag schemes are described for both the Generalized Cube and

ADM networks. The number of data permutations passable by the ADM net-

x

work using positive dominant or negative dominant permutation routing

tags is counted. The number of permutations passable using natural per-

mutation routing tags is bounded.

Algorithms for determining permutation passability in the ADM net-

work using three related types of routing tags for distributed network

control are presented. Correctness proofs are given and algorithm com-

plexity determined.

To further investigate ADM network capabilities in SIMD mode, group

theory is used to derive additional properties. It is shown that the

ADM network cannot pass all even permutations when N > 8.

CHAPTER 1

INTRODUCTION

Throughput has been, and remains, a major Limiting factor of the

scope of data processing tasks performed by computer systems. Many

tasks of current interest such as machine vision, image processing, se-

ismic exploration, air traffic controL, and aerodynamic simulation could

greatly benefit from performance that is in excess of current computer

systems.

HistoricaLLy, computer system designers have attempted to meet the

demand for increased throughput by buiLding new generations of machines

which, most often, differed from their predecessors only in circuit

switching speed. System architccture remained reasonably similar to the

basic von Neumann machine. To continue the significant gains nade over

the years using this approach wiLL require further major reductions in

circuit switching times. Indeed, circuits using the Josephson effect

promise to make picosecond switching times practical in the not too dis-

tant future. But, there is an ultimate Limit to the switching speed of

a given circuit, determined by the propagation speed of electromagnetic

waves: the speed of Light. So alternate methods of improving

throughput are of interest.

Throughput is not directly dependent on the circuit switching

speed. ULtimateLy, throughput is maximized on a given system when any

task takes only one instruction cycle to execute. To achieve a

2

reduction in the number of system instruction cycles, new machine organ-

izations and algorithm structures may be used.

In tandem with the improvements in circuit switching speeds, signi-

ficant circuit cost reductions have been realized. The reduced cost of

hardware has made large scale parallel processing systems feasible.

Such architectures are suited for problems that can be decomposed into

independent subtasks. Simultaneous execution of these subtasks allows a

reduction in the number of system instruction cycles needed to perforn

the task. All of the problems listed previously as being computational-

ly intensive could benefit from parallel processing systems.

One type of parallel architecture is the single instruction stream

- multiple data stream (SIMD) system. Such machines typically consist

of N processors, N memories, an interconnection network, and a control

unit. The control unit broadcasts instructions to all processing ele-

ments, and all active processors execute the same instruction simultane-

ously. This is the single instruction stream. Each processor executes

these instructions on data stored in a memory with which it is associat-

ed. This provides the multiple data stream. The interconnection net-

work serves to provide interprocessor communication.

A second type of parallel processor system is the multiple instruc-

tion stream - multiple data stream (MIMD) machine. Again there are typ-

ically N processors, N memories, and an interconnection network. Howev-

er, processors execute instructions from their own memories, thus pro-

viding multiple instruction streams.

The interconnection network chosen for a parallel processing system

will greatly influence the performance of the machine. Many questions

about the capabilities of interconnection networks remain unanswered.

This is especially true for the SIMD system environment where the inter-

connection network will often be called upon to transfer information

among all N processors simultaneously, that is, to perform data pernuta-

tions. Poor performance in passing needed permutations could render a

particular interconnection network unsuitable for use in an SIMD system

by causing a serious degradation in processor utilization.

PASM, a partitionable SIMD/MIMD parallel processor, is a reconfi-

gurable multimicroprocessor system under development at Purdue Universi-

ty. It is designed to operate in either mode of parallelism. Two in-

terconnection networks are being considered for use in PASM: the Gen-

eralized Cube and the Augmented Data Manipulator (ADM). The Generalized

Cube has been studied. Various properties of the ADM have been examined

but further investigation is needed. This work is concerned with the

capabilities of the ADM network in SIMD mode. Increased knowledge of

ADM network performance will allow a more informed choice of an inter-

connection network for PASM.

The general model of SIMD parallel processing systems to be used

throughout this work is described in Chapter 2. Chapter 3 contains a

brief overview of PASM. In Chapter 4, the two networks are fornally de-

fined. The setting of the networks to perforin permutations is dis-

cussed. Chapter 5 presents the argument for counting the number of dis-

tinct permutations passable by the GeneraLized Cube network, for later

comparison with the ADM network.

Chapter 6 investigates one parameter of ADM network performance -

the number of passable permutations. This development involves both

4

properties of network topology and combinatorial mathematical tech-

niques. First, the number of permutations performable by a network

stage is counted. Then, using network partitioning, the arguments are

extended to provide upper and lower bounds on the number of data permu-

tations passable by the ADM network. An exact count is given for the

case N = 8. Finally, the asymptotic behavior of the bounds is analyzed

and a comparison with the number of Generalized Cube performable permu-

tations is made.

The use of routing tags for distributed network control is dis-

cussed in Chapter 7. Routing tag schemes for the Generalized Cube are

The permuting capability of the network is not at all limited by the

routing tag control.

Chapter 8 reviews two families of routing tags for the ADM network.

A count of the number of permutations passable using positive dominant

or negative dominant permutation routing tags is given. The number of

permutations passable using natural permutation routing tags is bounded.

Algorithms are developed in Chapter 9 to determine the passability

of an arbitrary permutation by the ADM network under distributed control

by any of three related routing tags. The correctness of the algorithin

is proven.

Further ADM network properties, derived using group theory, are

presented in Chapter 10. The permutations passable by the ADM are addi-

tionally characterized as a result.

Ej

5

CHAPTER 2

MODEL OF SIMD MACHINES

The acronym SIMD stands for single instruction stream - multiple

data stream [FL]. Typically, an SIMD machine is a computer system con-

sisting of a control unit, N processors, N memory modules, and an

interconnection network. The control unit broadcasts instructions to

all of the processors, and all active processors execute the same in-

struction at the same time. Thus, there is a single instruction stream.

Each active processor executes the instruction on data in its own asso-

ciated memory module. Thus, there is a multiple data stream. The in-

terconnectiin network, sometimes referred to as an alignment or

permutation network, provides a communication facility for the proces-

sors and memory modules.

One way to model the physical structure of an SIMD machine is shown

in Figure 2.1. As indicated, there are N processing elements (PEs),

where each PE consists of a processor with its own memory. The PEs re-

ceive their instructions from the control unit. Communication among the

PEs is accomplished through the use of the interconnection network.

This structure is called the PE-to-PE approach. The Illiac IV [BOU] is

an example of this configuration.

Because each processor has direct access to its local memory module

and relatively poorer access to any other memory module, tasks requiring

transfers of large blocks of data between PEs should be avoided.

6

CONTROL U141T

IPROCESSOR 01 PROCESSOR I PROCESSOR 21RCSO

MEMORY MEMORY MEMORY 2 . MEMORY N

INTERCONNECTION NETWORK

Figure 2.1 A PE-to-PE model of an SIMD machine.

A

7

Rather, algorithms invoLving a data base which can be partitioned into

largely noninteracting segments are most suited to this structure. Com-

munication between PEs can be supported by a unidirectional interconnec-

tion network since each PE has access to a network input and output.

A second way to model an SIMD machine is shown in Figure 2.2. This

is the processor-to-memory approach. In general, there may be P proces-

sors connected to M memories through the interconnection network in this

approach. The figure shows the case where there are N processors and N

memories. The BSP [JE] is an SIMD machine with this structure.

In this case transfer of large blocks of data from processor to

processor is easily accomplished by using the interconnection network to

change the memory module linked to a given processor. One disddvantage

of this architecture is that each instruction or data fetch iust pass

through the network. Another is that two processors can only comnuni-

cate through a shared memory module.

For the processor-to-memory structure, processors must be able to

perform memory read and write operations through the interconnection

network. If the processors and memories have fixed access to the inter-

connection network, then it must support bidirectional communication. A

unidirectional interconnection network can be used if provision is made

to alLow either processors or memories to be attached to both network

inputs and outputs.

Further information about SIMD machine structures is contained in

[ST]. Variations on the PE-to-PE and processor-tu-memory architectures

are discussed in [BA] and ILA]. A mathematical model of SIMD machines

is presented in [S£51.

8

CONOLLUNI

PROCESSOR0 PROCESSOR1 PROCESSOR 2 PROCESSOR N.J

INTERCONNECTION NETWORK

MEMO Y 0 MEMORY- MEMORY 2 MEMORYN1

Figure 2.2 A processor-to-memory modlel of an SIMD machine. .

9

The model of SIMD machines to be used in this and subsequent

chapters, is the PE-to-PE model [SI5]. Each PE is assigned a unique ad-

dress from 0 to N-I, represented in binary as pn-lPn-2 .plPO. The

results obtained for the ADM network will be valid fur either model,

however.

10

CHAPTER 3

OVERVIEW OF PASM

There are severaL types of paraLLel processing systems. An SIMD

(single instruction strean - muLtiple ddta stream) machine typicalLy

consists of a set of N processors, N memories, an interconnection net-

work, and a control unit (e.g. IlLiac IV). The controL unit oroadcasts

instructions to the processors and all active ("turned on") processors

execute the same instruction at the same time. Each processor executes

instructions using data taken from a memory with which only it is asso-

ciated. The interconnection network aLlows interprocessor cainunica-

tion. An MIMD (multiple instruction stream - multiple datd stream)

machine usually consists of N processors and N memories, where each pro-

cessor can follow an independent instruction stream (e.g. C.nnp). As

with SIMD architectures, there is a multipLe data stream and an inter-

connection network. A partitionable SIMD/MIMD system is d pardLleL pro-

cessing system which can be structured as two or more independent SIMD

and/or MIMD machines. In this chapter, the basic organization of PASM,

a partitionabLe SIMD/MIMD system being des-gned at Purdue University for

image processing and pattern recognition, is briefLy overviewed.

SIMD machines can be used for "local" processing of segmerits of im-

ages in parallel. For example, the image can be segmented, and each

processor assigned a segment. Then, following the same set of instruc-

tions, such tasks as line thinning, threshold dependent operations, and

L _-,,... _

11

gap filling can be done in parallel for all segments of the image simul-

taneously. Also in SIMD mode, matrix arithmetic used for such tasks as

statistical pattern recognition can be done efficiently. MIMD machines

can be used to perform different "global" pattern recognition tasks in

parallel, using multiple copies of the image or one or more shared

copies. For example, in cases where the goal is to locate two or more

distinct objects in an image, each object can be assigned a processor or

set of processors to search for it. An SIMD/MIMD application might in-

volve using the same set of microprocessors for preprocessing an image

in SIMD mode and then doing a pattern recognition task in MIMD mode.

PASM is a special purpose, dynamicalLy reconfigurable, large-scale

muLtimicroprocessor system. Due to the low cost of microprocessors,

computer system designers have been considering various multimicrocom-

puter architectures. PASM was the first multimicroprocessor system in

the literature to combine the following features: (1) it can be parti-

tioned to operate as many independent SIMD and/or MIMD machines of vary-

ing sizes; and (2) a variety of problems in image processing and pattern

recognition will be used to guide the design choices.

Figure 3.1 is a block diagram of the basic components of PASM. The

System Control Unit (SCU) is a conventional machine, such as a PDP-11,

and is responsible for the overall coordination of the activities of the

other components of PASM. By carefully choosing which tasks should be

assigned to the SCU and which should be assigned to other system com-

ponents (such as the Memory Management System), the SCU can work effec-

tively and not become a bottleneck.

12

MEMOR SYSEM CNTRO
STORAGE_ COTOLSORG

FigrE 3.UNoc ITga vriwo A

13

The Parallel Computation Unit (PCU) contains N = 2n processors, N

memory modules, and an interconnection network. The PCU processors are

microprogrammable microprocessors that perform the actual SIMD and MIMD

computations. The PCU memory modules are used by the PCU processors for

data storage in SIMD mode and both data and instruction storage in MIMD

mode. A memory module is connected to each processor to form a proces-

sor - memory pair called a processing element (PE) as shown in Figure

3.2. A pair of memory units is used for each memory module. This

double-buffering scheme allows data to be moved between one memory unit

and secondary storage (the Memory Storage System) while the processor

operates on data in the other memory unit.

The interconnection network provides a means of communication anong

the PCU PEs. Two different interconnection networks dre being con-

sidered for PASM: the Generalized Cube and the ADM. Both consist of

. = log 2N stages of switches and are controlled by routing tags. Both

can be partitioned into independent subnetworks if all of the PEs in a

partition of size P = 2p have the same value in the low order n-p bit

positions of their addresses. Studies are currently being conducted to

choose which of these networks to implement in PASM. This work is a

part of that effort.

The Micro Controllers (MCs) are a set of Q = 2 q microprogrammable

microprocessors, numbered (addressed) from 0 to Q-1, which act as the

control units for the PCU processors in SIMD mode and orchestrate the

activities of the PCU processors in MIMD mode. Each MC is attached to d

memory module (a pair of memory units so that memory loading and compu-

tations can be overlapped). Control Storage contains the programs for

14

~~ PROCESSING ELEMENT 0

r~EM OAM MICRAMOCR

MEM.M N-i BXRC

I I V
INTRCOEION ELMNTWORK

z

Fiur 3. PASM PIA e MCOtto- nt

15

the MCs.

Each MC controls N/Q PCU processors. The physicaL addresses of the

N/Q PEs connected to an MC, shown in Figure 3.3, have as their low-order

q bits the physical address of the MC, so that the network can be parti-

tioned. Possible values for N and 0 are 1024 and 16, respectiveLy. A

virtual SIMD machine (partition) of size RN/Q, R = 2 r and 1 < r < q, is

obtained by loading R MC memory modules with the same instructions

simultaneously. In SIMD mode, the R MCs are synchronized and each MC

fetches instructions from its memory module, executing the controL flow

instructions (e.g. branches) and broadcasting the data processing in-

structions to its PCU PEs. Similarly, a virtual MIMD machine of size

RN/Q is obtained by combining the efforts of the PCU processors of R

MCs. In both cases, the physical addresses of these MCs must have the

same low-order q-r bits so that all of the PCU PEs in the partition have

the same low-order q-r physical address bits.

In each partition, the PCU PEs are assigned logical addresses.

Given a virtual machine of size RN/Q, the PEs have logical numbers, 0 to

(RN/Q)-I, (the high-order r+n-q bits of the physical number). Similar-

ly, the MCs are assigned logical numbers from 0 to R-1 (for R > 1, the

high-order r bits of its physical number). The PASM language compilers

and operating system will be used to convert from logical to physical

addresses, so a system user will deal only with logical addresses.

The Me Management System controls the loading and unloading of

the PCU memory modules. It employs a set of cooperating dedicated mi-

croprocessors. The Memory Storage System provides secondary storage for

these files. Multiple devices are used to allow parallel data

16

FROM SYSTEM CONTROL UNIT

AND CONTROL STORAGE

PROC. 0

PROC. MC MCQA M

*MICRO- O

PROC. N-Q *PROC. 0 MC MEM.

PROC. I1m

PROC. Q+Il MC M E. SSE

P R O C . INM CQ +M

PROC.Q-

PROC. 2Q-1 MC

PROC. N-I

Figure 3.3 PASM Micro ControL~ers.

17

transfers.

The Memory Storage System will consist of N/Q independent Memory

Storage units numbered from 0 to (N/Q)-1. Each Memory Storage unit is

connected to Q PCU memory units. For 0 < i < N/Q, Memory Storage unit i

is connected to those memory modules whose physical addresses are of the

form (Q*i)+k, 0 < k < Q. Thus, Memory Storage unit i is connected to

the i th processor/memory module pair of each MC as shown in Figure 3.4.

Since the PE memories are double-buffered, while one job is being pro-

cessed, results from the previous job can be stored and the next may be

loaded.

The two main advantages of this approach for a partition of size

N/Q are that (1) all of the memory modules can be Loaded in parallel and

(2) the data is directly available no matter which partition (MC group)

is chosen. This is done by storing in Memory Storage unit i the data

thfor a task which is to be Loaded into the i Logical memory module of

the virtual machine of size N/Q, 0 < i < N/Q. Thus, no matter which MC

group of N/Q processors is chosen, the data from the ith Memory Storage

unit can be loaded into the i th logical memory module of the virtual

machine, for all i, 0 < i < N/Q, simultaneously, i.e., in one parallel

block transfer. This same approach can be taken if only (N/Q)/2d dis-

tinct Memory Storage units are available, 0 < d < n-i, using 2d parallel

block loads will be required instead of just one. In generdl, a task

needing RN/Q processors, 1 < R < Q, logically numbered 0 to (RN/Q)-1,

will require R parallel block loads if the data for the memory module

whose high-order n-q logical address bits equal i is loaded into Memory

Storage unit i. This is true no matter which group of R MCs (which

18

PCU PE#

0 MC 0

MSU -MC I

0 - 2 - MC 2

3MC 3

77

F- 8

2nd 10 4

r 28

m s- 2 9

q30
31

Fig;re 3.4 Organization of the PAM Memory Storage System for N =32

and Q = 4, where "MSU" is Memory Storage Unit, "MC" is Micro

Controller, and "P('U" is PraLLeL Computation Unit.

19

agree in their Low-order q-r address bits) is chosen. If only (N/Q)/2d

distinct Memory Storage units are available, 0 < d < n-q, then R*2d

paralLeL block loads will be required instead of just R.

A set of microprocessors is dedicated to performing the Memory

Management System tasks in a distributed fashion, i.e., one processor

handles Memory Storage System bus control, one handles the scheduling

tasks, etc. This distributed processing approach is chosen in order to

provide the Memory Management System with a large amount of processing

power at low cost and high speed (due to the parallelism possible).

This overview of PASM, a large scale partitionable SIMD/MIMD mul-

timicroprocessor system for image processing and pattern recognition,

has been provided as background material for the following chapters.

For additional information about various aspects of PASM see: organiza-

tion ESI3,SMS1,SSKMS], instruction set [SMI), masking schemes for ena-

bling and disabling PEs [SI1,SI2,SMS1,SSKMS], interconnection networks

[MS,SI1,SI4,SI5,SI6,SS1,SS2,SSMA], operating system ESSMMS], programming

language [MSS1], and memory management system [SKW,SSKMS], and examples

of use [S17,FSS,MSS2,SMS2,SSE].

20

IAPTER 4

NETWORK DEFINITIONS

In the SIMD environment it is useful to describe the interconnec-

tion network as a set of interconnection functions, where each is a per-

mutation (bijection) on the set of PE addresses SI1. When intercon-

nection function f is applied, network input i is connected to network

output f(i) for all i, 0 < i < N, simultaneously. That is, saying that

the interconnection function maps the source address S to the destina-

tion address D is equivalent to saying the interconnection function

causes data sent on the input line with address S to be routed to the

output line with address D.

The physical structure of an interconnection network can be

described by several parameters. A link or connection carries messages

or data in the network between other network elements. A switching

element selects the link or links over which messages or data will be

sent through the network. A set of links connecting a network input, or

source, to a network output, or destination, is called a route.

The Generalized Cube network [SS1) is shown in Figure 4.1 for

N = 8, where N is the number of inputs to the network. It is an

n = log 2N stage network where each stage impLements one of the cube in-

terconnection functions [S$1). The n cube functions are defined by

1~ 21 2

2tg 2 1 0

EXNAG 3 5A5 3T 3 I

Fi ur 4. Th 2ee dh e Cu e n t o k f r N 8 h Tra g t

exhag concin of th inecag bo ar hon

22

cubei(Pn-l..p 0) = Pn(p.Pi+IPiPi-1...po

for 0 < i < n. The switching elements of this network are called inter-

change boxes. For performing permutations there are two legitimate

states of an interchange box: (1) straight - input i to output i, input

j to output j; and (2) exchange - input i to output j, input j to output

i. In each stage of this network the pair of inputs to an interchange

box is selected so that cube. maps one to the other, and vice versa.

When an interchange box in stage i is set to exchange, the data items

input to that interchange box are transferred as specified by the cube i

interconnection function. When set to straight, data items input are

transferred according to the identity function, i.e. identity

(Pn po) =n- P1 po Since each interchange box is individually

controlled, each stage i will perform the cube, interconnection function

on some subset of the data items depending on the settings of the inter-

change boxes.

There is a class of cube-type networks of which the Generalized

Cube is representative. By combining the results of [SI4,SS1,WF1,WF2]

it can be seen that all of the following networks are topologically

equivalent: Generalized Cube [SSI], the STARAN flip network EBA], the

omega network ELA], and the indirect binary n-cube network EPE]. (The

SW-banyan (S=F=2) is defined as a graph EGLI and has the sane topology

as a multistage cube [WF2].) For this reason the Generalized Cube can be

used as a standard for comparing cube-type networks with other intercon-

nection networks.

The augmented data manipulator (ADM) network is shown in Figure 4.2

for N = 8. It is an N input, n stage network based on the PM21 (plus-

23

a e

b / f ,k

h di

STAGE... 2 0

Fiur 4. The aumete d...t... 3aiuao (AM wrk fr N 8
.trigh conecton .re show b4 t dote lie TM b

th 4 oi 4ies ..ndb. tedahe ins

U 5 5F

24

minus 2i) interconnection functions [SI1. Each of the n stages con-

sists of N switch cells. There is also an (n+l)-st column of network

output cells. The PM2I functions are defined by

PM2+i(j) j + 2' modulo N

and

PM2 _(j) j - 2i modulo N

for 0 < j <N, 0 < i < n. Note that PM2 +(n-1) PM2n Each cell
+Cnl) (n-1) Echcl

of the ADM can receive none, one, two, or three of the signals straight,

PM2 i, and PM2_i [SII,S16]. Corresponding to Figure 4.2, the signal

"PM2 " means use the solid line connection; "PM2_i," the dashed Line

connection; and "straight," the dotted line connection. Stages of the

network are numbered from n-1 to 0. The data output from cell j at

stage i becomes the data input to cell k at stage i-I where k c (j-2i

modulo N, j, j+2i modulo N). Each cell is controlLed independently of

any other cell.

The ADM network is based on Feng's data manipulator [FE]. The data

manipulator is also based on the PM21 functions and consists of n+1

columns of N celLs. There are again three connections from an input

cell j at stage i, namely PM2+i, PM2_i, and straight, where 0 < j < N

and 0 < i < n. All but the last column are controlled by a pair of sig-
nals selected from a group of six. U1 (PM2_i), DI (PM2+), dnd

H 1 (straight) control those input cells at stage i whose i address bit

is 0. The signals U2 (PM2_), D2 (PM2i), and H2 (straight) control

those cells whose i th address bit is 1. Thus, the ADM is a data

25

manipuLator network with individual cell control.

In an SIMD environment, the network configuration established in

the Generalized Cube or ADM network would depend on the permutation of

network inputs to outputs desired. As an example, for the permutation

which maps any input x to (x+3) modulo N, 0 < x < N, the settings for

both networks, when N = 8, are shown in Figures 4.3 and 4.4. Not dIL

permutations of N items can be performed by these networks in one pass

through the network. However, the permutation capability of the ADM

network is known to be a superset of that of the Generalized Cube

[SI4,SS1J.

26

St1 2 1 0

Figur 4. In5cag b 5 setig fo pefrmn 3 cylcUhf f

moul 8 in t 2 Gee 4ie Cube.

U

T 6 3 35 6 6

2?

T U

STAGE 2 2 0

shP of 3 3ou 8.

L *****I

28

CHAPTER 5

COUNTING GENERALIZED CUBE PERMUTATIONS

The N-input Generalized Cube network has Nn/2 interchange boxes.

For permuting data, each interchange box can be individuaLLy set to one

of two states, either straight or exchange (see Figure 4.1). Thus,

there are 2 different ways to set the Nn/2 interchange boxes. It is

clear from the structure of the network that every possible setting will

result in a one to one mapping of inputs to outputs, i.e. a perinutation,

since each interchange box performs one to one connections.

The following theorem is needed to show that a one-to-one

correspondence exists between network settings and permutations for the

Generalized Cube.

Theorem 5.1: There is one and only one route between any source and des-

tination for the Generalized Cube network.

Proof: Consider an arbitrary source, S = (sn1 ...s0), and a destination,

D = (dn-l...d0). For a route connecting S to D to exist, the cube i in-

terconnection functions, 0 < i < n, which are implemented by the physi-

cal network hardware must be able to map S to D. In each stage of the

network there is exactly one interchange box with an input l"',elled by

some given address. Thus S can be napped to D if first in stage n-1 the

interchange box with S as an input is set to straight if s n- = dn-1 or

set to exchange if sn-1 dn.. The straight connection inaps

29

(Sn-1...s o) to (Snl. = (dnlSn_2...SO). The exchange connection

performs cuben 1 mapping (sn 1...s0) to (Sn_1 . S = (dnlsn 2 -. S)

This procedure can be repeated for stage n-2, setting the interchange

box with (dnlsn_2.. .s0) as an input to the correct state to map

(diSn2 .. s) to (cdld 2 S3 ... S).

The procedure can be continued for stages n-3 through 0 napping an

arbitrary source to any destination. The procedure is deterministic and

there is only one valid choice of interchange box state for each stage,

so there is only one route between a source and destination.

[)

Now consider two distinct network settings. There must be at least

one interchange box which is set straight in one of the settings, and

exchange in the other. Pick a source, S, which is mapped to its desti-

nation, D, through this particular interchange box for one of the set-

tings. There is only one path throigh the network between any

source/destination pair. Thus, using the other setting does not allow S

to map to D, giving a distinct permutation. A permutation is said to be

passable by an interconnection network if the physical network structure

(i.e., interchange boxes, for the Generalized Cube) allows the connec-

tions to be made. Therefore, each distinct setting results in a dis-

tinct permutation giving a total of 2Nn/2 permutations passable by the

Generalized Cube (and its equivalents [SSI]).

This permutation count for the Generalized Cube network is rela-

tively straightforward. It is included here for later comparison to the

number of permutations performable by the ADM network.

RNA

30

CHAPTER 6

COUNTING AUGMENTED DATA MANIPULATOR PERMUTATIONS

6.1 Introduction

Unlike the case of the Generalized Cube network, the question of

the number of distinct permutations passable by the ADM network does not

yield to a straightforward consideration of alL possibLe network states.

There are two reasons for this difficulty. One is the fact 'hat in the

ADM, unlike the Generalized Cube, an arbitrary network setting nay not

result in a permutation of network inputs to outputs. Figure 6.1 ihow.

an example of this. When the two routes of two different

source/destination pairs have any links in common a collision is said to

exist. Data passing through the network can be lost in this situation.

In Figure 6.1 each cell is performing an allowable switch setting. How-

ever, in stage 1 both cells 1 and 4 connect to cell 1 and in stage 0

cell 5 connects to both cells 4 and 5. If the network setting is f,

then f(1) = f(4) = 1 and f(5) = 4 or 5. Clearly, f is not a perinuta-

tion. The second reason is that for certain permutations more than one

valid network setting exists. Figure 6.2 shows two settings which are

equivalent. In each case the same permutation of network inputs to out-

puts is performed, that is 0 to 3, 1 to 6, 2 to 5, 3 to 2, 4 to 7, 5 to

4, 6 to 1, and 7 to 0.

For the remainder of the discussion, ADM network performable permu-

tations are referred to as overdll permutations. Configurations of

31

0 0 0 0

1 1 1

2 2 E 22 U

N 3 3 3 3 T

P 4 _4 4 4 P

u 5 5 5 5u

T 6 I6 6 T

7 7 7 7

STAGE 20

Figure 6.1 Example of a network setting for N =8 which does not

correspond to an overall permutation.

AI

32

U

T
N

T 5 T

STAGE 2 0 a

b U

T
T >

N 3 3 .3

ST G 2 4 40::::

Figue 62 Eamp~ oftwodistnctnetork ettngsfor 8 hic
corsodt h ae vrl.pruain

33

stage j of the network, for 0 < j < n, which are permutations of stdge j

inputs to outputs are called stage j permutations.

The approach to counting the number of overall permutations will be

first to determine what type of network settings give a permutation of

inputs to outputs. Next, the number of stage 0 permutations is counted

and the result generalized to any stage. Finally, using partitioning

theory and the results concerning network stages, the network is treated

as two subnetworks connected to stage 0, and upper and lower bounds on

the number of data permutations performable by the entire ADM network

are established.

6.2 Stage Permutations

Before the number of overall permutations performable by the ADM

network can be counted, the two difficulties described in the previous

section must be addressed. The following answers the first difficulty,

that of determining which type of network settings correspond to permu-

tations.

Lemma 6.1: An ADM network configuration is an overall permutation if and

only if it consists of stage i permutations for all i, 0 < i < n.

Proof: Assume a given network configuration is an overall permutation.

For this to be true there can be no conflict of data at any cell in the

network, i.e., no cell can receive data frum more than one cell in the

previous stage. Because each stage has the same number of cells, no

cell can fail to receive data, without conflict or loss of data in that

stage. Thus, if the network configuration is an overall permutation

then each stage i configuration must be a permutation for all i,

34

o < i <n.

Assume that each stage i configuration is a permutation for all i,

0 < i < n. Because of this constraint on the stage configurations, no

conflict can exist in the network. This implies that the network confi-

guration is an overall permutation.

[]

This lemma, while obvious, is presented because it establishes the cri-

teria for permutation passability in the ADM network network, which is

central to the development that follows. A permutation is passable by

the ADM network if and only if a set of N routes exist which perform the

desired mapping without conflict.

To deal with the second difficulty, that of generating overall per-

mutations with more than one network setting, a divide and conquer ap-

proach will be used. This will limit the need to check for setting

redundancy to stage 0 of the network. First, the configurdtions of

stage 0 are investigated.

Stage 0 is the only stage which can affect the low order bit of d

source address, causing mapping to a destination with d low order bit

that is either the same or different from that of the source. Let

S = (sn-lSn-2...slSO) be a source, and D = (dnIdn2*..d1d0) its desti-

nation. A connection in stage 0 that does not affect the low order bit

of the destination address, i.e., s0 = do, is called a straight

connection. A connection that changes the low order bit, s0 = do, is

called an exchange. This is shown in Figure 6.3. A regular exchange is

between stage 0 cells (p n 1 ...p10) and (pn_1...pl
0 + 20) moduLo N. An

irregular exchdnge is between stage 0 cells (pn- 1...P10) and

35

STAGE 0 3 3NETWORK(
INPUTS OUTPUTS

STAGE 0

Figure 6.3 a) Straight connections, b) ReguLar exchange, c) irreguLar
exchange.

36

(Pnl... P10 - 20) modulo N. Because a permutation is one to one, any

possibLe stage 0 permutation, except the all .+20 or all -20 configura-

tions, consists of straight and/or exchange connections onLy (i.e.,

every +20 or -20 connection is part of an exchange) ESI63. The all +20

and all -20 connections form permutations because every cell uses +20 or

every one uses -20 (modulo N arithmetic).

Consider the stage 0 permutations other than the all +20 or all

-2 0 . They can be represented by an N-bit binary number, called the

characteristic binary number. A binary digit is associated with each

adjacent pair of cells, including a digit for the wrap-around pdiring of

the cells labeled 0 and N-1. If the adjacent pair of cells together

form an exchange connection, the characteristic binary digit is 1. If

not, the digit is 0. An example of this assignment is shown in Figure

6.4.

In order to use the characteristic binary numbers for counting

stage 0 permutations, two kinds of digit adjacency are distinguished.

When the first and last bits of the characteristic binary numbers are
not considered adjacent it is linear adacency. When the first and last

bits are considered adjacent it is circular adjacency.

Lemma 6.2: Every stage 0 permutation, except the settings all +20 or all

-2 0, has a unique characteristic binary number with no circuLdrly adja-

cent bits that are both ls.

37

STAGE 0
NUTPUTS

INPUTS33OUPT

p - O-

6 0

-0

STAGE 0CHARACTERISTIC
L BINARY

NUMBER

Figure 6.4 A stage 0 permutation and
its characteristic binary num be r

for N 8

38

Proof: Every stage 0 permutation, except the all +20 and aLL -20 confi-

gurations, can be formed from straight and exchange connections [SI6].

If the characteristic binary number of a configuration has circularly

adjacent Is, then there is a cell involved in two exchanges such that

Pn-lPn-2...PlPo (Pn-lPn-2.pp 0+20) modulo N

and

Pn-iPn-2 ...plPO n-lPn-2 ...plPo-2 0) modulo N

This is shown in Figure 6.5. This mapping is not one-to-one, hence the

configuration is not a permutation. If the associated binary number has

no circularly adjacent is, then every stage 0 input can be involved in

at most one exchange. Since every input is involved ii either a

straight or an exchange connection, the configuration will be one-to-

one, and hence a permutation.

[]

The characteristic binary numbers of stage 0 permutations can be

used to count the number of these permutations. Lemmas 6.3 and 6.4 are

based upon LOS).

Lemma 6.3: The number of N-bit binary numbers with no linearly adjacent

is is found using the recursive relationship

L(N) = L(N-1) + L(N-2)

where L(2) 3, L(3) 5, and N > 4.

39

0 0

_ 2 2

STAGE 0 - NETWORK
INPUTS 3 3 OUTPUTS

4 4--
5 5

STAGE 0

Figure 6.5 Configuration implied by two adjacent ls in the chdracteris-
tic binary number. This is not a permutation.

I

40

Proof: If an N-bit number ends in a 0, then it will have no linearly ad-

jacent Is if it has no linearly adjacent Is in the first N-I bits. The

number of aLL such N-bit numbers is L(N-1). If an N-bit number ends in

1, then the immediately preceding bit must be a 0 if the number is to

have no Linearly adjacent Is. Also, the first N-2 bits of the number

must have no linearly adjacent Is. The number of all such N-bit numbers

is L(N-2). Thus, L(N) = L(N-1) + L(N-2).

The initial conditions may be derived by noting that L(2) = 3

(i.e.: 00,01,10) and L(3) = 5 (i.e.: 000,1OO,010,001,101).

Lemma 6.4: The number of N-bit binary numbers with no circularly adja-

cent Is is

C(N) = L(N) - L(N-4)

where N > 8.

Proof: L(N) exceeds C(N) by the number of N-bit numbers with no Linearly

adjacent is which do have circularly adjacent Is. These numbers are all

of the form

1 0 aI a2 ... aN-4 0 1

where the number a a2 ... aN-4 is a binary number with no linearly adja-

cent is. There are L(N-4) such numbers. Thus, C(N) = L(N) - L(N-4).

C)

41

Theorem 6.1: For an N-input ADM network, the number of stage 0 permuta-

tions is

P0 (N) = C(N) + 2

where N > 8. ALso, PO(2) = 2 and P0 (4) = 9.

Proof: By Lemma 6.2, P0(N) will be equal to the number of characteristic

binary numbers with no circularly adjacent Is, plus the two cases all

00+2 and all -20. P0 (2) can be counted by direct enumeration. P0 4) can

be counted either by direct enumeration or by noting that

C(4) = L(4) - 1, the "-I" being for the case 1001.

The method used to count the number of stage 0 permutations can be

applied to any stage of the ADM network.

Theorem 6.2: For an N-input ADM network, the number of stage i permuta-

tions is

P.(N) = P (N/2i)
2

where N > 2, and 0 < i < n.

Proof: To count the number of ways in which stage i can permute data,

i n-i1 i
consider the set of cells S = {j,j+2 ,j+2*2 ,...j+C2 1)*2 } for a

fixed j, 0 < j < 2i. In stage i an arbitrary cell, k, can be mapped to

any of (k-2 i) modulo N, k, (k+2i) modulo N). That is, if k £ S, for

any fixed j, 0 < j < 2i, then (k-2 i) modulo N c S and

(k+2i) modulo N c S. Since successive elements of S differ by 2i, this

mapping of k is completely analogous to that of k mapping to

Art.. " * .. l n I I

42

(k -2 modulo N, k , Ck'+2) modulo N} where k # S =

(0,1,...,2 n-I-}. This second mapping is that of stage 0 in an ADM net-

work with 2 inputs. Thus the cells of S can perform P0(2n-1) =

Po(N/2 i) permutations. There are 2i possible values of j, each defining

a set Sj such that S n k = 0 for k 0 j and 0 < j,k < 2 i . That is, the

2i sets are disjoint, so the permutations performable on the cells of Sj

are independent of those performable on Sk, for k 0 j. Thus
i 2

P.(N) = P (N/2i)

6.3 Network Permutations

The remaining obstacle to counting the number of distinct ADM per-

formable overall permutations is determining what class of permutations

have more than one network setting. If the network is small this task

can be avoided. For an ADM network where N = 4, the number of perform-

able permutations can be counted by direct enumeration.

Lemma 6.5: For N = 4, the ADM network can perform all possible N! = 24

permutations.

Proof: By direct enumeration (see [SS3]).

1)

For N > 4, direct enumeration is not a practical alternative for

counting the number of overall permutations. Consider conceptually

separating stage 0 from the rest of the network. This is shown in Fig-

ure 6.6. Stages n-1 through 1 can be partitioned into two independent

subnetworks, each with N/2 inputs [SI6,SS1. All the odd-numbered cells

43

a e\/

Cb f 7

5 5 1 0

N U
PT

U

h d

STAGE 2 1 0

Figure 6.6 The first step in the conceptual process of partitioning an
ADM network for N = 8 into two independent subnetworks
joined at stage .. Each cell that interfaces stag 1 and 0

is shown divided into an output cell from stage 1 and an in-
put cell to stage 0.

-~- T

44

in stages n-i through I will constitute one of the subnetworks. This is

the odd subnetwork. All the even-numbered cells in stages n-1 through 1

constitute the other subnetwork, the even subnetwork. The relationship

of these two subnetworks to the final stage of the N-input ADM network,

stage 0, is shown in Figure 6.7.

The partitioning described connects the outputs of the even subnet-

work to all even-numbered inputs of stage 0. The outputs of the odd

subnetwork are connected to the odd-numbered inputs of stage 0. Parti-

tioning the ADM network allows an N-input network to be treated as two

N/2-input independent ADM networks combined at stage 0 of the N-input

network.

Lemma 6.6: The four stage 0 permutations all regular exchanges, all ir-

regular exchanges, all +20, and all -20 connect all even subnetwork out-

puts to odd numbered network outputs and all odd subnetwork outputs to

even numbered network outputs. Furthermore, no other stage 0 permuta-

tion does this.

Proof: The four named permutations each connect all even subnetwork out-

puts to odd network outputs and all odd subnetwork outputs to even net-

work outputs because each forces d0 = s 0 for all source/destination

pairs. This is shown in Figure 6.8 for N = 8. A permutation not of the

named set must have a straight connection. If an output, D, is connect-

ed to a straight stage 0 link, then d0 = s0. Thus, the four nained stage

0 permutations are the only ones with this property.

1]

45

EVEN SUBNETWORK

STAGE 2 STAGE I

2 STG 2 SA E 10

inus E an 0 deint eve anUd untok epc

tively.

46

a b

E 0 0 0 E 0 0 0

0 1 > I E 0 1 1< E

E 2 2< 0 £ 2 2 0

0 3 3 E 0 3 3 E

E 4 4 0 E 4 4 0

o 5 5 E 0 5 5 E

E 6 6 0 E 6 60

o 7 7 E 0 7 7E

b a
STAGE 0 STAGE 0

(a) (b)

a

E 0 0 0 E 0 00

o 1 1 E 0 I 1 E

E 2 2 0 E 2 2 0

o 3 3 E 0 3 3 E

E 4. 4 0 E 4 4 0

o 5 5 E 0 5 5£E

E 6 0 E 6 60

o 7 7 E 0 7 7 E

a a

STAGE 0 STAGE 0
(C) (d)

Figure 6.8 ILlustration of the four stage 0 permutations for N =8

which connect aLL even subnetwork outputs to odd network

outputs, and odd subnetwork outputs to even network outputs.

They are (d) aLl reguLar exchanges, (b) dLi irrequLar ex-

0 0
changes, (c) all +2 , and (d) all -2 .Even and odd source

subnetworks are indicated by E and 0, respectively.

47

Consider an arbitrary destination, D, of an N-input ADM network.

The source for the data arriving at D may have been either the even sub-

network or the odd subnetwork (see Figure 6.7) depending on the stage 0

configuration. Call the subnetwork which is the source of D the source

subnetwork.

Lemma 6.7: Consider the set of all stage 0 permutations except all regu-

lar exchanges, all irregular exchanges, all +20, and all -20. For each

of these permutations the set of pairings of source subnetwork with net-

work output is unique.

Proof: Proof by contradiction. Assume that two distinct stage 0 permu-

tations of this set both link the same source subnetwork to a given net-

work output, and that this is true for any network output. That is, the

two permutations have identical sets of pairings. A permutation of the

named set must have a straight connection. If an output, D, is connect-

ed to a straight stage 0 link, then d0
= s0. If it is connected to an

exchange, then do = so, and the source subnetwork differs from the pre-

vious case. Thus all straight connections of one permutation must be

duplicated in the other, and vice versa, if the source subnetworks are

to be the same for each output.

A circularly adjacent pair of Os in a characteristic binary number

corresponds to a straight connection. Specifying all straight connec-

tions thus specifies all circularly adjacent Os in the characteristic

binary numbers of both permutations. The remaining bits of the numbers

must contain no circularly adjacent Os. Recall that no circularly ddja-

cent Is may appear since this is a permutation. Thus, the first and

'

48

last bits of any contiguous unspecified bit positions must be Is and the

interior bits must alternate ls and Os. Single unspecified bit posi-

tions must become Is. Each unspecified bit position is thus assigned d

unique value. Therefore, both numbers are identical. The permutations

cannot be distinct.

1)

Let P(N) be the number of distinct overall permutations performable

by an N-input ADM network. And let Fu(N) and P (N) be upper and lower
U L

bounds on P(N), respectively.

Theorem 6.3: A lower bound on the number of distinct overall permuta-

tions performable by the N-input ADM network is

PL(N) = P L(N/2) * EP0(N)-3]

where PL (4) = P(4) = 24; N > 8.

Proof: As a result of Lemma 6.1 only configurations which are permuta-

tions at every stage need be considered in the following. The number of

permutations performable by one of the two independent subnetworks which

can be formed by partitioning the ADM is, by definition, at least

PL(N/2). Call the permutations available at the inputs of stage 0 the

input permutations. Because the two subnetworks of the partition are

independent, the number of distinct input permutations is at Least

PL (N/2)
.

Now, consider an arbitrary overall permutation. Assume that the

stage 0 permutation is fixed. Any change in the input permutation will

result in a change in the overall permutation. This is because

49

(a-c = bc) implies a = b where a, b, and c are permutations and - is

composition. Assume the input permutation and the stage 0 permutation

are both allowed to change. Let the stage 0 permutation be restricted

so that only one of the permutations all regular exchanges, all irregu-

lar exchanges, all +2 0, or all -20 is allowed; there are P0(N)-3 of

these. As a consequence of Lemma 6.6 and Lemma 6.7, any change in the

stage 0 permutation will cause at least one output address to be mapped

from a different subnetwork. But because the two subnetworks are in-

dependent, no change of the input permutation can result in the mapping

of a source of one subnetwork to the output of the other. The resulting

overall permutation cannot be the same as the original no matter how

stage 0 and the subnetworks are manipulated.

Thus, no overall permutation can be duplicated by changing the in-

put permutation and/or changing the stage 0 permutation (provided the

stage 0 permutation is not one of the three excluded). Hence, each com-

position of input permutation with allowable stage 0 permutation (i.e.,

not one of the three excluded) results in a unique overall permutation.

So, the number of input permutations is multiplied by the number of

stage 0 permutations, minus the three special cases, to yield the lower

bound given on the number of performable overall permutations.

The boundary condition was stated in Lemma 6.5.

A3

50

Theorem 6.4: An upper bound on the number of distinct overall permuta-

tions performable by the N-input ADM network is

Pu(N) = Pu(N/2)2 * P0(N)

where PU (4) = P(4) = 24 and N > 8.

Proof: Assuming that the composition of any input permutation with any

stage 0 permutation (including all regular exchanges, all irregular ex-

changes, all +2 0, and all -20) yields a unique overall pernutation,

gives the above result.

For an ADM network with N = 8, an exact count of the number of per-

formable permutations can be derived.

Theorem 6.5: P(8) = P(4) 2 * EP (8)-3].

Proof: From Lemma 6.6 and Lemma 6.7 the stage 0 permutations all regular

exchanges, all irregular exchanges, all +2 0, and all -20 are the only

stage 0 permutations which share a common set of pairings of source sub-

network with network output. Consider a particular overall permnutation

involving a stage 0 permutation selected froin this set of four. The

same overall permutation can be maintained after changing stage 0 to

another of the given set of four stage 0 permutations if the input per-

mutation can be suitably modified. For exdmple, Figure 6.2 shows a

given overall permutation in the upper network which uses the 4ll +20

setting in stage 0. The lower network shows stage 0 set to all regular

exchanges and the necessary changes in the settings of stages 2 and 1

51

made so that the same overall permutation is performed. The changes in

stages 2 and 1 settings accomplish the needed input permutation modifi-

cation. Since the choice of source subnetwork remains unchanged for aLL

outputs after resetting stage 0, the necessary changes in the input per-

mutation will occur only within the two independent stage 0 subnetworks.

For N = 8 these subnetworks are themselves 4-input ADM networks which

can perform any permutation of four items (Lemma 6.5). Therefore, any

needed modification of the input permutation can be performed. So, the

overall permutations performable using any member of the given set of

four stage 0 permutations will be exactly the same as those performable

using any of the three other stage 0 permutations. Thus P(N) is equal

to the Lower bound given in Theorem 6.3.

Because the ADM network with N = 8 cannot perform all N! = 40,320

permutations (P(8) = 24,496), the method of Theorem 6.5 does not extend

directly to larger values of N.

Corollary 6.1: The number of distinct permutations performable by the

N-input ADM is bounded by

P (N/2)2 * P (N)-3 < P(N) < P (N/2)2 * P (N)
L 0 U 0

where N > 8. Also

PL(8) = P U(8) = P(8) = 26,496.

52

Proof: This corollary follows from Theorems 6.3, 6.4, and 6.5. P(N) is

strictly less than P u(N) because there exist overall permutations for

which multiple distinct input permutation and stage 0 permutation compo-

sitions result in the same overall permutation. For example an overall

permutation of input i to output (i+1) modulo N, 0 < i < N, can be done

0 0
with stage 0 set to all +2 , all -2 , or all regular exchanges.

[)

6.4 Tightness and Asymptotic Behavior of the Bounds

The suitability of the bounds given in CorolLary 6.1 as a measure

of ADM network performance will depend on how tight the bounds are for

various values of N, or network size. The less the difference between

the upper and lower bounds the more useful they are as an indicator of

ADM network performance. The tightness of the bounds stated in Corol-

lary 6.1 can be calculated as a function of the number of inputs to the

network. Define the spread of the bounds, S(N), to be

Pu(N) - P (N)

S(N) U L
P L(N)

Using this formula and the results of CoroLLary 6.1 and Theorem 6.5,

Table 6.1 is calculated. The number of permutations performable by the

Generalized Cube network (see Chapter 5) is included in Table 6.1 for

comparison.

Let x P L(N0) and x+A P Pu(NO), where N0 = 2 for i c {0,1,2,...1.

Then for an ADM network with N0 inputs the spread is

53

S(N P(N) - PL(NO)
0 PL(No)

((x+) - x
x

Now the values of the Lower and upper bounds for the next power of two

Larger ADM network are respectively x2 * [P0 (2*N0) - 3) and

2
(x+A) * PO(2*N0). Using the approximation P (N) P (N) -3 the

0 00 0 0 0

spread is then

(x+&)2 • P0 (2*N0) - 2*P0 (2*No)

S(2*N 0) = x2 , P0(2*N0)

(x+ &)
2 - 2

2
x

Since P0 (32) = 4,870,349 this is a good approximation for No > 32. For

an arbitrarily large ADM network the spread, using the approximation, is

in general

(x+A) - x2
S(N) =

21
x

where N = 21*N0 , and i ((0,1,2,...}. As network size increases without

limit

54

Lim S(N) = Lim S (N)
N 2i, N 0+

= Lim S(N)
i o

= Lim 2'i 2 i

x

= Lim x+A) 1
L ®kX2'

Thus the bound becomes a Less precise measure of the capability of an

ADM network as network size increases. However, as shown in TabLe 6.1,

the value of S(N) is small for networks for considerable size. So, for

practical values of N, the bounds given in Corollary 6.1 give a useful

approximation of the number of ADM network performable overall permuta-

tions.

ql i ' i 9

55

TabLe 6.1 P L(N) and P u(N) are the Lower and upper bounds on the number

of permutations performable by an N-input ADM network,

respectively. S(N) is the spread of the bounds calculated

as [P u(N)-P L(N)/P L(N). Cube (N) is the number of permuta-

tions performable by an N-input Generalized Cube network,

given by 2Nn/2

N PL(N) Pu (N) S(N) Cube (N)

4 24 24 0 16

8 26,496 26,496 0 4096

16 1.55x 01 2 1.55x 12 1.36x0 -3 4.29x0 9

32 1.17x10 3 1 1.17x1031 2.74x10 3 1.21x10 24

64 3.24x0 75 3.26x075 5.45xi0 3 6.28x0 57

128 5.90x0l 117 5.97x017 7 1.09x0 - 2 7.27x 01 3 4

256 1.01x0 40 9 1.13xi 409 2.20xi0 2 1.80x0 3 08

925 925 - 9512 1.22x0 1.28xl0 4.44xl0 2 3.74xi0693

1024 1.50x10 19 57 1.64x101 95 7 9.09x10- 2 1.88xi0 1 541

2048 2.27x0 41 28 2.70104128 1.90x0 - 1 6.34x10 25 85

56

6.5 ConcLusions

The type of interconnection network chosen for an SIMD machine will

have far reaching consequences for the ultimate system performance or

lack of it. Comparison of various candidate interconnection networks

can involve many factors such as cost, partitionabiLity, etc.

This chapter has considered the number of permutations perforndble

by the ADM network. For the ADM network, counting the number of per-

formable permutations is made difficult by the fact that the network has

settings which do not yield a permutation. Also, the network has multi-

ple settings for certain passable permutations.

A method was given for counting the number of stage i configura-

tions which are permutations, for any size ADM network, 0 < i < n. Us-

ing partitioning theory in a divide and conquer approach led to an upper

and lower bound on the number of distinct overall permutations which an

ADM network can perform. To assess the characteristics of the bounds

their tightness and asymptotic behavior was investigated. For the spe-

cial case N = 8, an exact count of the number of distinct overall permu-

tations performable was proven. Finally, a comparison of the number of

distinct permutations performable by the ADM and Generalized Cube net-

works was made.

lb1

57

CHAPTER 7

GENERALIZED CLSE PERFORMANCE WITH ROUTING TAGS

7.1 Introduction

Another measure of the utility of a particular interconnection net-

work is its ability to operate without centralized controL. For SIMD

machines with a Large number of processing eLements, centralized control

of the interconnection network may cause that component of the system to

become a bottleneck.

One way to distribute control of the interconnection network among

the N PEs is to use routing tags. Each PE first computes a routing tag

for the data item it wiLL send through the network. Then at each

switching ceLL, Logic circuits, capable of using the information of the

routing tag to control the ceLL setting, select an appropriate path so

the data item wiLL reach the desired destination. With this scheme the

overhead time needed to establish network settings is independent of

network size. Therefore, an important consideration when comparing the

relative merits of various interconnection networks is the nature and

capabilities of the routing tags compatible with each design.

This chapter considers the operation of the GeneraLized Cube net-

work using routing tags. A representative tag scheme is chosen and net-

work performance studied. The results obtained are used for comparison

with the ADM network.

58

7.2 Routing Tag Operation

There is only one route between any source and destination in the

GeneraLized Cube network (see Theorem 5.1). Consider a routing tag

scheme for the network which correctly specifies the one route for any

source/destination pair. Such a routing tag scheme will generate the

correct set of N routes for any permutation which is passable by the

Generalized Cube. Thus, the full permuting capabilities of the network

are available with such routing tags.

Several routing tag schemes exist which give the correct route for

any source/destination pair. One possibility is to generate a tag, T,

according to T = (tn1* ..t0) = S(D D [MCM]. The tag is interpreted in

the following way. If t. = 0 then the interchange box with the input

(cdn . d i+lsi.*..s 0) is set to straight. This is the interchange box in

stage i through which S is mapped to D (see Theorem 5.1). If t = 1,

the interchange box is set to exchange. For example if S = 0101 and

D = 1001 then T = 1100 and the interchange box settings are exchange,

exchange, straight, and straight.

This routing tag scheme uses easily computed tags of n bits. Be-

cause the exclusive-or operation is commutative, the tap mapping D to S

is the same as that for S to D. This allows handshaking to be performed

easily, if desired.

Other routing tag schemes are possible. In [LA], a 2n bit routing

tag consisting of the n-bit source and destination addresses is

described which is also suitable for use with the Generalized Cube net-

work. With these tags a processing element receiving data can compare

its address with that given in the tag to detect network errors. Anoth-

59

er scheme allowing certain kinds of broadcasting is presented in

[MCM,WEI.

7.3 Conclusions

The Generalized Cube network is well suited for distributed control

using routing tags. Any routing tag scheme which can specify the route

between any source/destination pair allows unrestricted use of the per-

muting capabilities of the network.

'1

60

CHAPTER 8

AUGMENTED DATA MANIPULATOR PERFORMANCE WITH ROUTING TAGS

8.1 Introduction

The importance of distributed network control was discussed in Sec-

tion 7.1. In this chapter various routing tag schemes for controlling

the ADM network are reviewed. These schemes were presented in

EMS,SSMAJ.

One family of routing tags discussed does not allow unrestricted

operation of the ADM network. However, these tags have the compelling

characteristic of easy compatibility. Thus, more precise knowledge of

the performance of these tags in an SIMD environment will aid in

evaluating their feasibility, as welL as that of the ADM network.

8.2 Routing Tag Schemes

The routing tag schemes discussed in this chapter are defined in

EMS]. To characterize an arbitrary path in the ADM network a full

routing tag is required. A full routing tag requires 2n bits and is of

the form F = (f2n-1 f2n-2. f1f0). It can be defined such that the even

numbered bits represent the magnitude of the route to be taken within a

particular stage and the odd numbered bits represent the sign. That is,

if f2i = 0, the straight Link in stage i is used regardless of the value

of f 2i1 " If f2 i I and f2i+1 0, the +2 Link is used. If f2i 1

and f2i+1 = 1, the -2 link is used. Control of the ADM network is

and,

j

61

distributed by constructing each cell with sufficient logic to examine

bits f 2i+ and f2i of a routing tag and make the appropriate link selec-

tion. For example, with N = 16, and if the source is 5 and the destina-

tion is 12, one possible value for F is 10001110. The route taken is

3 1 0+2 , straight, -2 , +2 . The use of full routing tags allows the ADM to

perform any passable permutation. However, no function or algorithm of

reasonable complexity is known which will give a set of N non-

conflicting tags for all permutation passable by the ADM network. So,

less flexible, but easily computed, routing tag schemes have been

developed.

If all the sign bits in a full routing tag are the same, the infor-

mation contained in those bits can be represented by one bit which is

the sign bit for the whole tag. An n+1 bit routing tag, T, can be

formed by computing the signed magnitude difference between the destina-

tion, D, and the source, S, such that T = (tn t n tl. t) =

D - S = (d i...d 0) - Sn-1.. .So). The sign bit is t , where tn = 0 in-

dicates positive and tn = 1 indicates negative. Bits t n * ..t0 equal

the magnitude or absolute value of D-S. If all N routing tags for a

permutation are calculated in this way, then the permutation is said to

be routed using natural permutation routing tags ESM23. A natural rout-

ing tag consisting of only straight or +2 i-type connections is said to

be positive dominant. A routing tag with only straight or -21-type con-

nections is negative dominant. A given natural routing tag must be ei-

ther positive or negative dominant.

To execute this scheme bits tn and ti are examined to determine the

link to be used at stage i. If ti = 0, the straight Link is used re-

62

gardless of the value of t . If t. = 1 and t = 0, the +2i Link is
n 1 n

used, and if t. = 1 and t = 1, the -2 link is used. With N = 16, and1 n

if the source and destination are again 5 and 12, respectively, then

T = 12-5 = 00111. The route taken is straight, +2, +21, +20

Clearly, for any arbitrary source/destination pair there exists a

corresponding natural routing tag and a tag-specified connection path

through the ADM network. Also, natural tags are easily computed. These

properties indicate that natural routing tags may be suitable for con-

trol of the ADM network in an MIMD environment EMS].

In EMS] it is also shown that a natural routing tag and its two's

complement are equivalent in that they both route the same source to the

same destination. Letting T' be the two's complement of T, then from

the previous example T' = 11001. Input 5 is still connected to output

3 012 but the route taken is -2 , straight, straight, -2

As a consequence of its definition, any natural routing tag must be

either positive or negative dominant (this is determined by the value of

tn). The two's complement of any tag must have the opposite of the sign

bit of the original unless T is zero, in which case T' = T. However,

the all zero tag is both positive and negative dominant. Thus a posi-

tive dominant routing tag and a negative dominant routing tag must exist

for any source/destination pair. So positive dominant and negative dom-

inant routing tags can be used in an MIMD environment.

In an SIMD environment, however, the desirable characteristics of a

routing tag scheme are more restrictive. For good utility routing tags

should, in addition to requiring minimal computation for their genera-

tion, enable passage of needed overall permutations. That is, idedlly,

.

63

N non-conflicting paths should be specified when a network performable

permutation is needed. If all N tags are calculated as natural routing

tags, then the permutation is said to be routed using natural

permutation routing tags. A permutation is said to be routed using

positive dominant permutation routing tags if those tags that are nega-

tive dominant in the set of natural permutation routing tags are con-

verted to positive dominant. Negative dominant permutation routing tags

are defined correspondingly.

For most cases the ADM network provides two or more distinct routes

between a source and its destination. Only when a source and destina-

tion have the same address is there only one route (for a proof of this

see Lemma 10.1). The n+1 bit routing tag scheme described above can

specify at most two distinct routes between a source/destination pair -

one positive dominant and one negative dominant. If more routes exist

they cannot be exploited with this scheme. However, the ease of gen-

erating these tags may make them useful in many instances, despite their

Limitations.

8.3 The Number of Permutations Passable Using Positive or Negative

- ominant TaI

In Chapter 6 partitioning theory was applied to the ADM network at

stage 0 to give two independent subnetworks on stages n-1 through 1 (see

Figures 6.6 and 6.7). That is the output cells of these subnetworks are

stage 1 output cells. The subnetworks so created have the structure of

N/2-input ADM networks. Because of this each of the subnetworks Mdy in

turn be partitioned in the same manner as the whole network. This can

be seen as partitioning the entire network at stage 1. Two independent

II I 7iE " - I ,.

64

subnetworks will be created on stages n-1 through 2 from each of the

subnetworks on stages n-1 through 1. This gives four independent sub-

networks whose output celLs are stage 2 output celLs and which each have

the structure of an N/4-input ADM network.

This process may be repeated until N/2 independent subnetworks

whose output cells are stage rr-1 output cells are generated. These sub-

networks have the structure of a 2-input ADM network. At each stage i

there are 2 independent subnetworks created by this process. Summing

over all stages gives the total number of subnetworks generated as

n-1 i = l0 ,

i=O

=2 n-1

= N-1.

Note that by including the term for i = 0 in the summation, the entire

network has been considered a subnetwork of itself.

Since each subnetwork has the structure of an ADM network then it

has the equivalent of a stage 0. This stage 0 will consist of all stage

i input and output cells and their straight, PM2+, and PM2 Links con-

tained in a given subnetwork which is created by the partitioning pro-

cess at stage i. This set of cells and links is called the subnetwork

stage 0.

The number of overall permutations passable by the ADM network us-

ing positive dominant permutation routing tags can now be counted.

65

Theorem 8.1: The ADM network can pass 2 N - distinct overall permutations

using positive dominant permutation routing tags.

Proof: Consider stage 0 of the entire network. Any exchange connection

0 00
involves the use of +2 and -2 links. The -20 link cannot be used by

positive dominant tags, so no exchanges can be performed in stage 0 when

positive dominant tags are used. For the same reason, the all -20 set-

ting cannot be performed. This Leaves only the all straight and all +20

settings, which can be performed with positive dominant tags.

For each of the subnetworks the same reasoning applies. The sub-

network stage 0 for each subnetwork may be set only to all straight or

all +2 . However, each subnetwork stage 0 may be set independently be-

cause the subnetworks are independent (this includes stage 0 of the en-

tire network). Since there are N-I subnetworks there are 2 N - distinct

settings of the entire network.

Since the setting of each subnetwork stage 0 is a permutation, the

setting for the entire network performs a permutation. Consider again

stage 0 of the entire network. The all straight and all +20 settings do

not have the same pairings of source subnetwork with network outputs

(see Lemmas 6.6 and 6.7). The concept of source subnetwork can be ex-

tended naturally to each of the subnetworks created by the partitioning

process by recalling that any subnetwork has the structure of an ADM

network with the appropriate number of inputs. So in an analogous

manner, the all straight and all +2 settings on each subnetwork stage 0

will not have the same pairings of source subnetwork with subnetwork

outputs.

66

Thus, any change in a subnetwork stage 0 setting will cause at

least one subnetwork output cell to be mapped from a different source

subnetwork. The source subnetworks for a given subnetwork are indepen-

dent. So changing a subnetwork stage 0 setting must give a different

permutation. Thus the 2N - settings correspond to 2 N - distinct pass-

able overall permutations.

CoroLlary 8-1: The ADM can pass 21 distinct overall permutations using

negative dominant permutation routing tags.

Proof: The proof is the same as for Theorem 8.1 except that the possible

subnetwork stage 0 settings are all straight or all -2

[]

When natural permutation routing tags are used additionaL permuta-

tions can be performed on the ADM network. The perfect shuffle is an

example of one such permutation [MASI.

The number of permutation performable using natural tags can be

bounded by considering the following. Some of the PM2+i links of stage

i of the ADM network connect a stage i input cell j to a stage i output

cell k where j > k. Also there are PM2_i Links which connect L to m

where L < m. These type connections are called wraparound connections.

In Figure 4.2 these links are the ones drawn in two parts indicated by

Letters.

67

Lemma 8.1: ADM network wraparound connections are not used when the net-

work is controlled using natural routing tags.

Proof: By definition, a natural routing tag, T, is computed as T = D-S,

where S and D represent the source and destination addresses, respec-

tively. If S < D, then T > 0 and the route which wilL be used is posi-

tive dominant. This means that at any stage i in the network data rout-

ed from S to D will pass through cells with addresses A. such thati

S < A. < D, for 0 < i < n. When S > D, A. is such that S > A.i > D, for

0 < i < n. Thus no wraparound connections are used.

The number of overall permutations performable without using the

wraparound connections can be counted. Let Pw (N) be the number of per-

mutations performable by an N-input ADM network without using wraparound

connections.

Theorem 8.2: Without using wraparound connections the number of distinct

overall permutations the ADM network can perform is

Pw(N) P w(N/2) 2 * L(N-1)

where P (2) 2.

Proof: The stage 0 permutations alt irregular exchanges, all +2 and

all -2 cannot be performed without using wraparound connections. Also,

without wraparound all stage 0 permutations can be represented by a

characteristic binary number which need not include a bit to represent

the connections possible between cells 0 and N-I. Further, any

68

characteristic binary number with no linearly adjacent Is will

correspond to a unique stage 0 permutation. Deleting the bit for wra-

paround connections gives an N-1 bit characteristic binary number of

which L(N-1) have no linearly adjacent Is. There are two independent

source subnetworks for stage 0. Each must not use any wraparound con-

nections if the entire network is not to use any. Since each subnetwork

has the structure of an N/2-input ADM network, each can perform P2 (N/2)

permutations without using any wraparound connections. Thus, the number

of input permutations is P w(N/2)2. Because the allowable stage 0 permu-

tations each have different pairings of source subnetworks with network

outputs, Pw (N) = Pw (N/2)2 * L(N-I).

The value for P W(2) is found by direct enumeration.

[I

Let P Nat(N) be the number of permutations performable by an N-input

ADM network using natural permutation routing tags.

Theorem 8.3: The number of permutations performable by the N-input ADM

network using natural permutation routing tags is bounded by

P (N/2)2 < P (N) < Pw(N)
Nat Nat W

where Pt (2) 2.

Proof: By Lemma 8.1, natural routing tags do not use wraparound connec-

tions. Thus, by Theorem 8.2, PNat < P (N). The inequality is strictly

less than because there are permutations passable without using any wra-

paround connections but which cannot be done using natural routing tag

routes. Figure 8.1 shows an example of this.

69

0 0

N i 2 U

p 3 3 3 T

U4 4 4

5 5 '
T U

61 6 66 '

STAGE 2

Figure 8.1 An overall permutation for N =8 using no wraparound connec-

tions that is not performable using natural routing tags.

L,

70

The lower bound can be achieved by setting stage 0 to all straight.

There are then PNat (N/2)2 input permutations using only natural permuta-

tion routing tags. However, other settings for stage 0 may be possible

depending on the input permutation. If stages n-i through I are each

set to all straight, then any stage 0 setting not using wraparound con-

nections would give a network setting which consisted of naturaL routes.

By Lemma 6.7, any two stage 0 settings not using the wraparound connec-

tions (i.e., not all irregular exchanges, all +2i, or AlL -2 i) wi(l have

different pairings of source subnetworks with network outputs. Thus

changing the stage 0 setting will give a distinct overall permutation.

So P Nat(N/2)2 is strictly less than P Nat(N).

[]

8.4 Conclusions

Routing tags for the ADM rntwork were discussed. Full routing tags

allow an,- route to be specified. Natural, positive dominant, and nega-

tive dominant permutation routing tags, while unable to specify arbi-

trary routes, are more easily computed than full tags, in general.

The number of overall permutations passable by positive and nega-

tive dominan: tags was proven. The number of overall permutations pass-

able using natural tags was bounded.

71

CHAPTER 9

ALGORITHMS FOR DETERMINING PERMUTATION PASSABILITY
ON THE AUGMENTED DATA MANIPULATOR

9.1 Introduction

Chapter 8 discussed some of the limitations of natural, positive

dominant, and negative dominant permutation routing tags. A count of

the number of permutations passable using either positive or negative

dominant tags was given, and the number performable using natural permu-

tation routing tags was bounded. However, these results do not identify

the overall permutations passable using these tags. The next section

presents an algorithm which can be used to deternine if a given arbi-

trary overall permutation is passable using natural, positive dominant,

or negative dominant permutation routing tags.

9.2 The ALgorithms

The procedure to check the passability of a given overall permuta-

tion using any one of the routing tag schemes discussed in Section 8.2

is given in Algorithm 9.1. In the procedure, the variable dest is an

N-element vector where dest(j) is the destination associated with source

j, for 0 < j < N. The notation X is used to denote bit i of X.

To understand the operation of the algorithm, first re d(L that

only stage 0 can affect the least significant bit of a source address.

If S0 = d0 then stage 0 must be set to the straight link at the output

cell with the destination address. If so0 d0 then stage U must be set

72

1 procedure PASSABILITY(dest,N);

2 passable =true;

3 while passable = true do

4 for i =0 step 1 until Log2 N-2 do

5 check = 0; /*check is an N-element vector*/

6 for j =0 step 1 until N-i do

7 if dest(j)1 $ ji

8 then REQUEST;

9 if check(dest~j)) = 0

10 then check(dest(j)) = 1;

11 else passable = faLse;

12 if passable = false then stop;

ALgorithm 9.1 Procedure PASSABILITY

73

to a PM2I-type link at that cell.

Because natural routing tags specify a single specific path from a

source to its destination, at each stage of the network there is only

one cell through which a data item can pass. The N routing tags of the

type selected must require that each data item pass through a distinct

cell at each stage, if a permutation is to be passable using these tags.

This is the criteria used by the algorithm to decide passability (see

Lemma 6.1).

Before proceeding with the analysis of the algorithm it is useful

to define two terms. Switching cells which select the connections to be

used in stage i are called stage i input cells. Cells which are linked

to by stage i input cells are stage i output cells. Note that stage i+

output cells are stage i input cells.

The algorithm begins by comparing bits so and d of a source, j,

and its destination, dest(j), where 0 < j < N. If so = d a straight

connection must be used to link a stage 0 input cell to the stage 0 out-

put cell whose address is that of the destination. The address of the

stage 0 input cell is then dest(j). A straight link in stage 0 is

selected by retaining the current dest(j) value as the updated dest(j).

This is because the data item must pass through the stage 0 input cell

specified by the updated value of dest(j).

If so 0 d0 then a PM21-type connection must be used to link a stage

0 input cell to the correct output cell. In this case the address of

the stage 0 input cell will be either (dest(j) + 20) modulo N or

(dest(j) - 20) modulo N, where the -20 and +20 links are used, respec-

tively.

~i.

74

Positive dominant routing tags can only use the +2i links of the

PM21-type connections. Negative dominant routing tags can only use the

-2i links. So, updating dest(j) to the two possible stage 0 input cell

address values serves to spe cify the +20 or -20 link. Updating dest(j)

proceeds according to the instruction of REQUEST, three variations of

which are listed in Algorithm 9.2. A different version of REQUEST ex-

ists for each type of tag that may be desired.

Consider the version for positive dominant permutation routing

tags. When sO 0 d0 the value of dest(j) is replaced by (dest(j) - 20)

modulo N which specifies the +20 link. Again, the data item must pass

through the stage 0 input cell specified by the updated value of

dest(j).

After each dest(j) is updated, the N-element vector, check, which

was initialized to all zeros, is used to indicate which stage I output

cell (same as stage 0 input cell) has been selected by the new dest(j).

The element check(dest(j)) is examined to see if it is a zero. If so,

it is set to 1 to indicate that a data item will pass through this par-

ticular stage I output cell. If, however the element of check has a-

ready been set to 1 this indicates a conflict of data items and the

given permutation is not passable using positive dominant permutation

routing tags. The logic variable, passable, is set to false in this

circumstance, and the algorithm terminates.

If bits s and d have been compared for each source/destination

pair, and each dest(j) has been updated without conflict, then the check

vector is reinitialized and the procedure begins anew for stage 1. This

time bits sI and dI of each source/updated-destination pair are compared

....... ir
'

.. . '1 - " :, .- J -. , o .,. ... ,,...

75

For positive dominant routing tags, REQUEST is:

dest(j) = (dest(j)-2 1) moduLo N

For negative dominant routing tags, REQUEST is:

dest(j) = (dest(j)+21) modulo N

For naturaL routing tags, REQUEST is:

if (dest(j)-j) > 0 then dest(j) = (dest(j)-21) moduLo N

else dest(j) = (dest(j)+2) moduLo N

Algorithm 9.2: Versions of REQUEST.

76

to determine the connections to use in stage 1. Since the setting of

stage 0 has been established at this point, only stage 1 can have any

affect on these bits.

The procedure is repeated for successive stages until either a con-

flict is detected, in which case the permutation is not passable and the

algorithm terminates, or the connections in stage n-2 were found to be

conflict free, implying the permutation is passable.

Stage n-1 need not be checked. To see why stage n-1 need not be

checked, consider the case where the permutation under test is conflict

free in stages 0 through n-2.

Since an overall permutation is being tested, if it is passable the

stage n-i configuration must be a stage n-1 permutation, as a conse-

quence of Lemma 6.1. Recalled from Chapter 4 that

P42+(nI)= PM2_ (r.). That is each cell, A, can only be mapped to it-

n-i n-1self or A+2 modulo N = A-2 modulo N. So, a stage n-1 configura-

tion is a stage n-1 permutation if and only if either the identity per-

mutation or an exchange is performed on each pair of cells, A and A+2n- I

modulo N, for 0 < A < N/2. The identity permutation can be performed on

any of the pairs of cells using routing tags of either dominance. The

exchange permutation can be performed on any of the pairs of cells using

positive dominant tags because A maps to A+2n-1 modulo N via d +2n -1

Link and the +2n -1 link from cell A+2n- 1 modulo N will map that cell to

(A+2 n l) + 2n -1 modulo N a A+N modulo N = A, completing the exchange.

Note that negative dominant tags can perform these two permutations on

any of the pairs of cells as well.

77

Connections in stage n-1 which are not stage n-1 permutations are

not needed if the permutation under test is conflict free though stage

n-2. There are two non-permutation settings possible on a pair of cells

A and A+2n- 1 modulo N in stage n-1 which involve a single Link from each

cell. One connects A and A+2n-i modulo N to stage n-1 output cell A;

the other connects the two cells to A+2N
-1 modulo N. If the algorithm

checked stage n-1 it would specify one of these two connections only if

n-idest(A) = dest(A+2 modulo N), which cannot occur when there is no

conflict through stage n-2. Settings involving none, two, or three

Links from either A or A+2n- 1 modulo N in stage n-1 are not needed be-

cause positive dominant routing tags (as well as negative dominant rout-

ing tags) define a single route from a source to destination.

Connections not performable by stage n-i, for example, A maps to

n-istage n-1 output cell B where B * A or A+2 modulo N, are also not

needed to complete the network setting. After checking stage n-2, the

a'jorithm will have updated the original values of dest(A) so that bits

0 through n-2 of A and dest(A) are the same. Thus, either A = dest(A)

or they differ by 2n - 1 . In either case, existing links in stage n-1 can

perform the connection. Thus only a stage n-1 configuration which is a

permutation will be required. Since the needed stage n-1 permutation

can always be performed, that stage need not be checked.

The algorithm can be shown to give a correct result by demonstrat-

ing that it imitates the subtraction performed to calculate a routing

tag. Expanding on the notation where Xi denotes bit i of X, Let X i/j,

for i > j represent bits i through j, inclusive, of X, and let X i/j 0

78

for i < j. First consider the case where positive dominant permutation

routing tags are desired.

Theorem 9.1: Let D be a particular destination, S its source, and Ri)

be the revised value of "dest(j)" after the inner loop of the algorithm

has been successfully completed i times. Then Rni D-Sn-11i -i-10 n-I/i,

where 0 < i < n-2 .

Proof: Let i = 0. Then

R(0)

Rn-/O ; by definition, initially

dest(j) = D (for S = j)

= (D - On-1/0

- (D - S-1 /0)n-1 /0 ; because S_1 /0 0

The remainder of the proof is by induction on i.

Basis step: Let i = 1.

(0)Case 1: So = DO. In this case the algorithm does not change R

R(1) (R0)

Rn-/1 Rn-/1 ; because SO = Do the test in

line 7 of Algorithm 9.1 is false,

so REQUEST is not executed

" n-1/1

(CD - SO/O)n. 1/1

Case 2: Si 0 DO . In this case the algorithm for use with positive dom-

79

inant tags subtracts 20 from D.

Subcase Ca): So 0, Ro0 D 1.

n-/-R -/ 20) n-/ because Rn-i/O D n10and

S Dothe test in Line 7

of Algorithm 9.1 is true,

so REQUEST is executed

((0) + 0 20 sneR(0)
- n-R1 11 + n-1/1 ; ic 0 1

(0)

-(D - S 0/0 n 1/1 ,since so 0

Subcase (b): S0 1, R(0) D 0.

n-i/i n-1/O n-i/i

-(D 1/0 - SO)n-. 1/1 since So

*(D S- / -/

80

Induction step: Assume R = (D - S

Mi Ci)
Case 1: Si = R.

i . In this case the algorithm does not change R1 "*I

R -i+1 R M because S = R i the test in

Line 7 of ALgorithm 9.1 is faLse,

so REQUEST is not executed

(CD - Si_1/0~n-i/i+1

C(i)
((D - S ; since S. = Ri = (D - S

no borrow can propagate

into the i+I bit position

i)Case 2: S R In this case the algorithm for use with positive

dominant tags subtracts 2' from R

Subcase (a): Si 0, R i 1.

0~+l) M (R() 2
R -i+1 n-/i 2; because S. $ R~l the test

n-1/i+ (n-1/i n-1/i+1 1 I

in Line 7 of Algorithm 9.1

is true, so REQUEST is

executed

= Ri) 2i 2 R. i)

+ -2) n-1/i+l ; since Ci

C(i)
= Rn-1/i1+

=(D- i-1/0 n-1 /i+I

I Ar-.A.

81

= (D - Si/O) n-I/i+I ; since S. = 0
1

Subcase (b): S. = 1, R = 0.1

C~i+1) Ci) -1)

n-i/i

= ((D - Si- /O) n-I/i -) n-Ii

= ((D - S i/o) n/i) n/i+I ; since S. = 1

(D i/O ni/i n-1/i+ l

13

Let IT! denote the magnitude of T. For positive dominant routing

tags: ITI = I0-SI = D-S where D > S, and when D < S, ITI = the two's

complement of ID-SI = the two's complement of (S-D) = N-(S-D) = N+(D-S).

Thus, T. = (D-SiI/0)i - Si Hence, T. = (D-Si-1/0)i 0 S. From

Theorem 9.1, R. = (D-S) Therefore, T. = Ri G) Si. So Ti

and R.i OD Si are equivalent criteria. When R. S Si = 0, that is,

1 and S are the same, the algorithm selects the straight con-

nection in stage i as does the routing tag. When R Mi and S. differ,

the algorithm selects the +21 connection, as would the routing tag,

since in this case T. = 1. Thus the algorithm faithfully simulates the1

operation of the positive dominant permutation routing tags.

If negative dominant permutation routing tags are to be used, a

similar argument shows that the algorithm, with the appropriate version

of REQUEST, simulates this situation accurately. For natural permuta-

82

tion routing tags, REQUEST includes a check for positive dominance by

determining if dest(j) - j is positive, i.e. greater than zero. If so,

dest(j) is updated using the positive dominant PM21 connection. If not,

dest(j) is revised using the negative dominant PM21 Link. ALL other

operations are as in the previous two cases.

Correct operation with natural routing tags is assured because the

revised eLements of the dest vector retain the positive dominant versus

negative dominant information. This is so because if S is routed to D

using the naturaL tag, and A. is the stage i output cell that the speci-i

fied path maps to in stage i, then S < A.< D when D > S, and S > Ai > D

when D < S, for 0 < i < n. So the dominance of the natural routing tag

generated by S and D can be determined from S and any of the A.

The time complexity of the algorithm is OCN Log2 N), in all cases.

The space complexity is O(N), in particular, two N-element vectors.

9.3 Conclusions

Several routing tag schemes for the ADM in an SIMD environment were

reviewed in this chapter. FulL routing tags, which aLLow unrestricted

use of the capabilities of the ADM network, were described and the dif-

ficulty of generating such tags was noted. Natural, positive dominant,

and negative dominant permutation routing tags, which are easily comput-

ed, were defined.

An algorithm, in three versions, was given to determine the passa-

bility of an arbitrary overall permutation using any of these three

types of more easily computed tags. Algorithm operation was described

and the computed determination of permutation passability shown to be

correct.

83

CHAPTER 10

FURTHER PROPERTIES OF THE AUGMENTED DATA MANIPULATOR NETWORK

10.1 Introduction

This chapter continues the development of ADM network properties.

Group theory [MCC], an area of abstract algebra, is used to prove the

theorems which are presented. The results obtained further characterize

the permuting ability of the ADM network.

10.2 Definitions and Notation

The results to be presented make use of the following terminology

and notation from group theory. For some permutation f, f 1 is the

inverse of f, that is if f maps (connects) a source S to a destination
-1

D, then f maps D to S. This holds for all source/destination pairs of

f.

A permutation, f, on the set of PE addresses, {0,1,...,N-1), can be

represented in Cauchy notation as

f(O) f(l) ... f(N-1))

where the top line is the source and the bottom line is the destination

to which f maps the source.

The permutation f can be represented as a product of cyc e, where

the cycle

PROPERTIES OF THE AUGMENTED DATA MANIPULATOR NETWORK IN A SIMD -ETC (U)
DEC 80 6 B ADAMS, H J SIEGEL AFOSR-78-3581

UNCLASSIFIED TR-EE 80-51 AFOSR-TR-8I-0203 NL

2_ 2ffIIIlfIIIIIIIIflf

84

(JO Jl j2 - Jx-1 Jx)

means f(jo) = jl, f(jl) = J2 " ".." f(jx-1) Jx" and f(Jx) = Jo The

physical interpretation of this cycle is that network input j is con-

nected to network output il" input j, is connected to output j2 ' ".."

input ix-1 is connected to output Jx , and input jx is connected to out-

put j0 The Length of this cycle is x+l; it is called an x+l cycLe. A

transposition is a cycle of length two. For example, if f is written in

Cauchy notation as

(1 2 3 45 6 7
\i 304576

then it can be written as the product of the four cycles:

(0 1 2 3)(4)(5)(6 7)

A permutation is even or odd depending on whether it can be ex-

pressed as a product of an odd or even number of transpositions, respec-

tively. For example, the permutation represented as (0 1 2) can be

written as (2)(0 2), where the product is formed from right to left,

as is the customary notation. Alternately, a k-cycle can be shown to be

even or odd as k is odd or even.

An element of a cycle is any network address contained in the cy-

cle. Two cycles are disjoint if they have no elements in common. The

cycLes (0 1 6) and (7 3) are disjoint, for example. Any permutation can

be written as b unique product of disjoint cycles. This is the disjoint

c c decomposition of the permutation.

85

10.3 Theoretical Results

This section considers further properties of the ADM network.

Lemma 10.1: Any 1-cycle in an overall permutation must be routed using

the straight connection on every stage.

Proof: Proof by contradiction. Assume a PM2I link is used in stage 0.

This must give a mapping to a destination which differs from the source

in bit 0 since only stage 0 can affect this bit. So the straight con-

nection must be used in stage 0. Using a PM21 link in stage 1 must give

a mapping to a destination differing from the source in bit 1, because

only stage 1 can affect bit 1 once stage 0 is fixed. Continuing this

chain of reasoning shows each stage must use the straight link.

In [S163 it is shown that in the it h stage of the ADM network,

0 < i < n, the transfer of data from the stage i input cell j can be

represented by only one of five possible cycles. The cycles are (j),

(j j+2i j+2*2 j+3*21 ... j+N-2i), (j+N-2i ... j+3*21 j+2*2 i j+2i j),

(j j+2i), or (j j-2i) where all arithmetic is modulo N, 0 < j < N. The

first of these is a 1-cycle. The network can perform any 1-cycle at any

stage. The next two can be found to be 2n
-i cycles. These specific

2n-i cycles are called network implemented 2n -cycles since they are

directly implemented by stage i. The Last two cycles Listed are tran-

spositions. These are called network implemented transpositions. Col-

Lectively, the cycles which can be directly implemented by a stage are

referred to as network implemented.

86

The relationship between ADM network structure and the cycle decom-

position of a permutation is considered in the following theorem and

corollary.

Theorem 10.1: In the ADM network all cycles of Length greater than one

which are part of the unique disjoint cycLe decomposition of a passable

overdll permutation, must be expressible in terms of a product of net-

work impLemented transpositions and/or 2n-i-cycLes with elements Limited

to those of the cycles of Length greater than one.

Proof: From Lemma 10.1, the network must be set to straight at each

stage i cell with the same address as any 1-cycLes in the overall permu-

tation. Thus, the eLement of any 1-cycle cannot appear as an element in

any n-cycle, for n > 1, of the passable overall permutation.

Corollary 10.1: An overall permutation consisting of a single transposi-

tion is passable by the ADM network if and only if it is a network im-

plemented transposition, i.e., of the form (j j±2i modulo N), where

0 < j < N and 0 < i < n.

Proof: From Theorem 10.1, onLy the network implemented cycles whose ele-

ments are the same as those of the given single transposition can be

used to pass the permutation. That is, if more than two cells use

PM2I-type Links then N-2 routes of only straight Links cannot exist.

Thus, if an overall permutation consisting of a single transposition is

passable then that transposition is network implemented.

87

If an overall permutation consists of a single transposition which

is network implemented then, clearly, it is passable.

SN is the permutation group for N elements. That is S is the setN N

of all permutations of N elements. AN is the alternating group on N ob-

jects and consists of all even permutations of the N items.

Theorem 10.2: The ADM network cannot perforin all 3-cycles in one pass

for N > 8.

Proof: Consider the 3-cycle (0 1 6). To be passable it must decompose

into network implemented cycles with elements in the set (0,1,6) (see

Theorem 10.1). The network implemented cycles must be of length three

or shorter since there are only three allowable elements. So only net-

work implemented transpositions may be used.

The possible transpositions with elements in the set {0,1,6} are

(0 1), (0 6), and (I 6). Network implemented transpositions are of the

form (j j±2 modulo N), so (1 6) is not implemented for any N. The cy-

cle (0 6) is implemented only when N = 8. When N 8, 0-21 modulo 8 =

6, so (0 6) is implemented. For N < 8, (0 6) has an element, 6, outside

the range of source addresses, 0 to N-I. For N > 8 (i.e., n > 3), 0+2'

modulo N 0 6, for 0 < i < n, and

jl

88

0-2 i modulo N = 2' - 2i

n-1 i-I= 2k- E 2

k=O k=O

n-1
=

k

k=i
0 6

Thus for N > 8, (0 1 6) clearly cannot be performed since onLy (0 1) can

be performed of the three possible transpositions on the set (0,1,6).

For N = 8, the transpositions (0 1) and (0 6) can be performed. Howev-

er, (0 6) is performed in stage 1 and (0 1) in stage 0 only. So the

network can only implement the product (0 1)(0 6) and not (0 6)(0 1)

since stage order is fixed. But (0 1)(0 6) = (0 6 1) 0 (0 1 6). The

ADM cannot, then, pass all 3-cycles.

C)

Theorem 10.3: For N > 8 the ADM network does not pass AN.

Proof: From Theorem 10.2 the ADM does not pass all 3-cycles for N > 8.

AN contains all even permutations of N elements and a 3-cycle is an even

permutation. Thus the ADM does not pass every element of AN.

10.4 Conclusions

This chapter presented further properties of the ADM network in an

SIMD environment. The results which were stated aid in characterizing

the famiLy of permutations passabLe by the ADM.

89

CHAPTER 11

CONCLUSIONS

This work is a study of various aspects of the ADM network which

influence its suitability for use in SIMD parallel processing systems.

The first aspect considered was the number of permutations passable by

the ADM network. Next a routing tag .-. eme that has been developed for

distributed control of the ADM network was described so that its perfor-

mance in an SIND environment can be investigated. Then algorithms for

determining permutation passability using these routing tags were

presented and analyzed. Finally, some additional theoreticdL results

were developed.

SIND machine models were described in Chapter 2 to provide a back-

ground in which to evaluate the ADM network. The role of the intercon-

nection network in SIMD machines was outlined for two system architec-

tures. Some basic requirements and Limitations for each structure were

noted.

Chapter 3 introduced PASM, a partitionabLe SIMD/MIMD multimicropro-

cessor system. Unique features of PASM include being 1) dynamicaLly

reconfigurabLe; 2) able to operate in either SIND or MIMD mode of

parallelism; and 3) able to be partitioned into machines of different

sizes, each of which may operate in SIND or MIND mode. Two interconnec-

tion networks are being considered for use in PASM: the Generalized

Cube and the ADM. The Generalized Cube network is better understood

90

than the ADM network. Increased knowledge of ADM properties will allow

a more informed decision on the interconnection network for PASM, and

other parallel processing systems, to be made.

The Generalized Cube and ADM networks were formally defined in

Chapter 4. The Generalized Cube was noted to be representative of a

class of cube-type networks, including the STARAN flip, the omega, the

indirect binary n-cube, and the SW-banyan (S=F=2) networks. The ADM was

shown to be derived from the data manipulator.

The number of distinct permutations passable by the Generalized

Cube was given in Chapter 5. The procedure used to obtain this result

relies on the one-to-one correspondence between permutations and legiti-

mate network settings. Both the count of permutations and this one-to-

one correspondence were used Later for comparative purposes.

Chapter 6 considered the number of permutations performable by the

ADM network. A method was given for counting the number of settings

which are permutations for any stage. Using partitioning theory and

combinatorial mathematics, upper and Lower bounds were established on

the number of overall permutations which an ADM network can perform. To

assess the characteristics of the bounds their tightness and asymptotic

behavior was studied. For an ADM network with eight inputs, an exact

count of the number of passable overall permutations was proven. Last-

ly, the number of ADM passable permutations was compared with that of

the Generalized Cube.

The use of routing tags for distributed control of interconnection

networks was introduced in Chapter 7. The permuting ability of the Gen-

eralized Cube when used with routing tags was discussed. The results

91

obtained were used for comparison with the ADM network.

In Chapter 8 severaL routing tag schemes which allow distributed

controL of the ADM network were reviewed. The number of permutations

performable using either positive dominant or negative dominant permuta-

tion routing tags was counted.

Chapter 9 presented an algorithm which can determine if an arbi-

trary overall permutation is passable using either natural, positive

dominant, or negative dominant permutation routing tags. Correct opera-

tion of the algorithm was demonstrated and its complexity stated.

Further properties of the ADM network can be derived using group

theory. The results which were presented in Chapter 10 aid in charac-

terizing the family of permutations passable by the ADM network.

Choosing the interconnection network for a parallel processing sys-

tem such as PASM is an important and difficult design task for the sys-

tem architect. A satisfactory compromise among many interconnection

network parameters including, among others, permuting capdbility and

performance with distributed control, must be reached. Analyses such as

those presented here are necessary in order to evaluate the cost-

effectiveness of the ADM as an SIMD interconnection network.

92

LIST OF REFERENCES

EBA) K. E. Batcher, "The flip network in STARAN," 1976 International
Conference on ParaLLel Processing, Aug. 1976, pp. 65-71.

EBOU] W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Ran-
dalL, A. H. Sameh, and D. L. Slotnick, "The Illiac IV system,"
Proceedings of the IEEE, Vol. 60, pp. 369-388, Apr. 1972.

(FE] T. Feng, "Data manipulating functions in parallel processors
and their implementations," IEEE Transactions on Computers,
Vol. C-23, Mar. 1974, pp. 309-318.

[FL] 1. J. Flynn, "Very high-speed computing systems," Proceedings
of the IEEE, Vol. 54, Dec. 1966, pp. 1901-1909.

[FSS] A. E. Feather, L. J. Siegel, and H. J. Siegel, "Image correla-
tion using parallel processing," Fifth International Conference
on Pattern Recognition, Dec. 1980, pp. 503-507.

EGLI G. R. Goke and G. J. Lipovski, "Banyan networks for partition-
ing multiprocessor systems," First Annual Symposium on Computer
Architecture, Dec. 1973, pp. 21-28.

[JE) C. Jensen, "Taking another approach to supercomputing,"
Datamation, Vol. 24, Feb. 1978, pp. 159-172.

[LA] D. Lawrie, "Access and alignment of data in an array proces-
sor," IEEE Transactions on Computers Vol. C-24, Dec. 1975, pp.
1145-1i51.

[LEI J. Lenfant, "Parallel permutations of data: a Benes network
control algorithm for frequently used permutations," IEEE
Transactions on Computers Vol. C-27, July 1978, pp. 637-647.

EMAS] R. J. McMillen, G. B. Adams III, and H. J. Siegel, "Permuting
with the augmented data manipulator network," Eighteenth Annual
Allerton Conference on Communication, Control, and Computing,
Oct. 1980, to appear in the proceedings.

[MCC) N. H. McCoy, Introduction to Modern ALgebra (3rd edition), Bos-
ton: ALLyn and Bacon, 1937.

93

[MCM] R. J. McMillen and H. J. Siegel, Interconnection Networks and
Operating System Considerations for PASM - A Reconfigurable
Multimicroprocessor System, School of Electrical Engineering,
Purdue University, Technical Report TR-EE 80-15, June 1980, 177

PP.

EMS] R. J. McMillen and H. J. Siegel, "MIMD machine communications
using the augmented data manipulator network," Seventh Annual
Symposium on Computer Architecture, May 1980, pp. 51-58.

CMSS1] P. T. Muetter, Jr., L. J. Siegel, and H. J. Siegel, "A parallel
language for image and speech processing," Fourth International
Computer Software and Applications Conference (COMPSAC '80),
Oct. 1980, pp. 476-483.

[MSS2] P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegel, "Parallel
algorithms for the two-dimensional FFT," Fifth International
Conference on Pattern Recognition, Dec. 1980, pp. 497-502.

LOS] M. J. O'Donnell and C. H. Smith, "A combinatorial problem con-
cerning processor interconnection networks," Department of Com-
puter Sciences, Purdue University, Technical Report CSD TR-352,
Nov. 1980, 5 pp.

[PE] M. C. Pease, "The indirect binary n-cube microprocessor array,"
IEEE Transactions on Computers, Vol. C-26, May 1977, pp.
458-473.

[SIll H. J. Siegel, "Analysis techniques for SIMD machine intercon-
nection networks and the effect of processor address masks,"
IEEE Transactions on Computers, Vol. C-26, Feb. 1977, pp.
T=-z117.

ESI2] H. J. Siegel, "Controlling the active/inactive status of SIMD
machine processors," 1977 International Conference on Parallel
Processing, Aug. 1977, p. 183.

[S13] H. J. Siegel, "Preliminary design of a versatile parallel image
processing system," Third Biennial Conference on Computing in
Indiana, Apr. 1978, pp. 11-25.

ES143 H. J. Siegel, "Interconnection networks for SIMD machines,"
Computer Vol. 12, June 1979, pp. 57-65.

ISI53 H. J. Siegel, "A model of SIMD machines and a comparison of
various interconnection networks," IEEE Transactions on
Computers, Vol. C-28, Dec. 1979, pp. 907-917.

[S16) H. J. Siegel, "The theory underlying the partitioning of permu-
tation networks," IEEE Transactions on Computers Vol. C-29,
Sep. 1980, pp. 791-8T'-.

94

[SI7] L. J. Siegel, "Image processing on a partitionable SIMD
machine," Workshop on New Computer Architectures and Imje
Processing, June 1980, to appear.

[SKW) H. J. Siegel, F. Kemmerer, and M. Washburn, "Parallel memory
system for a partitionable SIMD/MIMD machine," 1979
International Conference on Parallel Processing, Aug. 1979,--p.
212-221.

ESM1] H. J. Siegel and P. T. Mueller, Jr., "The organization and
language design of microprocessors for an SIMD/MIMD system,"
Second Rocky Mountain Symposium on Microcomputers, Aug. 1978,
pp. 311-340.

[SM2) H. J. Siegel and R. J. McMillen, "The use of the augmented data
manipulator in PASM," Fourteenth Annual Hawaii International
Conference on System Sciences, to appear, Jan. 1981.

[SMS1 H. J. Siegel, P. T. Mueller, Jr., and H. E. Smalley, Jr., "Con-
trol of a partitionable multimicroprocessor system," 1978
International Conference on Parallel Processing, Aug. 1978, pp.
9-17.

CSMS2] L. J. Siegel, P. T. Mueller, Jr., and H. J. Siegel, "FFT algo-
rithms for SIMD machines," Seventeenth Allerton Conference on
Communications, Control, and Computing, Oct. 1979, pp.
1006-1015.

ISS1] H. J. Siegel and S. D. Smith, "Study of multistage SIMD inter-
connection networks," Fifth Annual Symposium on Computer
Architecture, Apr. 1978, pp. 23-229.

CSS2J S. D. Smith and H. J. Siegel, "Recirculating, pipelined, and
multistage SIMD interconnection networks," 1978 International
Conference on Parallel Processing, Aug. 1978, pp. 206-214.

[SS3] S. D. Smith and H. J. Siegel, Design and Analysis of
Interconnection Networks for Partitionable Parallel Processing
Systems, School of Electrical Engineering, Purdue University,
Technical Report TR-EE 79-39, Aug. 1979, 274 pp.

LSSE) P. H. Swain, H. J. Siegel, and J. EI-Achkar, "Multiprocessor
'mplementation of pattern recognition: a general approach,"
Fifth International Conference on Pattern Recognition, Dec.
1986, pp. 309-317.

[SSKMS] H. J. Siegel, L. J. Siegel, F. Kemmerer, P. T. Mueller, Jr., H.
E. Smalley, Jr., and S. D. Smith, PASM: A Partitionable
Multimicrocomputer SIMD/MIMD System for Image Processing and
Pattern Recognition School of Electrical Engineering, Purdue
University, Technical Report TR-EE 79-40, Aug. 1979, 69 pp.

95

ESSMA] S. D. Smith, H. J. Siegel, R. J. McMillen, and G. B. Adams III,
"Use of the augmented data manipulator multistage network for
SIMD machines," 1980 International Conference on Parallel
Processing, Aug. 1980, pp. 75-78.

[SSMMS] H. J. Siegel, L. J. Siegel, R. J. McMillen, P. T. Mueller, Jr.,
and S. D. Smith, "An SIMD/MIMD multimicroprocessor system for
image processing and pattern recognition," 1979 IEEE Computer
Society Conference on Pattern Recognition and Image Processing,
Aug. 1979, pp. 214-224.

[STJ H. S. Stone, "Parallel Computers," in Introduction to Computer
Architecture, Science Research Associates, Inc., Chicago, 1975,
pp. 318-374.

[WE] K. Y. Wen, Interprocessor Connections - Capabilities,
Exploitation, and Effectiveness, Doctoral Thesis, Department of
Computer Science, University of Illinois, Report UIUCDCS-
R-76-830, Oct. 1976.

[WF1J C. Wu and T. Feng, "Fault diagnosis for a class of multistage
interconnection networks," 1979 International Conference on
Parallel Processing, Aug. 1979, pp. 269-278.

[WF2J C. Wu and T. Feng, "On a class of multistage interconnection
networks," IEEE Transactions on Computers, Vol. C-29, Aug.
1980, pp. 694-7'92.

I

I 0'

